Nature News

Inhabitants imaging of neural exercise in awake-behavior mice

1.

Hochbaum, D.R. et al. All-optical electrophysiology in mammalian neurons utilizing modified microbial rhodopsins. Nat. Strategies 11, 825-833 (2014).

2

St-Pierre, F. et al. Excessive constancy optical ratio of neuronal electrical exercise with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884-889 (2014).

three

Gong, Y., Wagner, M.J., Zhong Li, J. and Schnitzer, M. J. Imaging neuronal peaks in mind tissue utilizing FRET-opsin protein voltage sensors. Nat. Widespread. 5, 3674 (2014).

four

Adam, Y. et al. Pressure imaging and optogenetics reveal modifications in behavioral dynamics of the hippocampus. Nature 569, 413-417 (2019).

5

Chavarha, M. et al. The fast two-photon volumetric imaging of an enhanced voltage indicator reveals electrical exercise in neurons deep inside the awake mind. Preprint at https://www.biorxiv.org/content material/10.1101/445064v2 (2018).

6

Abdelfattah, A.S. et al. Vivid, photostable chemigenetic indicators for prolonged in vivo voltage imaging. Science 365, 699-704 (2019).

seven.

Gong, Y. et al. Excessive velocity recording of neural peaks in mice and awake flies with a fluorescent voltage sensor. Science 350, 1361-1366 (2015).

eight

Lou, S. et al. Electrophysiology all optics genetically focused with a Cre-dependent optopatch transgenic mouse. J. Neurosci. 36, 11059-11073 (2016).

9

Jin, X., Tecuapetla, F. & Costa, R.M. The bottom ganglia sub-circuits distinctly alter the evaluation and concatenation of motion sequences. Nat. Neurosci. 17: 423-430 (2014).

ten.

Shi, L.H., Luo, F., Woodward, D.J. and Chang, J. Y. Neural responses in a number of areas of the basal ganglia throughout spontaneous and treadmill locomotion duties within the rat. Exp. Mind Res. 157, 303-314 (2004).

11

Gritton, H.J. et al. Distinctive contributions of parvalbumin and cholinergic interneurons within the group of striatal networks throughout motion. Nat. Neurosci. 22, 586-597 (2019).

12

Flytzanis, N.C. et al. Variants of archaerhodopsin enhanced voltage-sensitive fluorescence in mammalian neurons and Caenorhabditis elegans. Nat. Widespread. 5, 4894 (2014).

13

Piatkevich, Okay.D. et al. A robotic strategy of multidimensional directed evolution utilized to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352-360 (2018).

14

Jin, L. et al. Easy potential potentials and lower-threshold electrical occasions imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779-785 (2012).

15

Chamberland, S. et al. Speedy two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically coded indicators. eLife 6, e25690 (2017).

16

Zou, P. et al. Vivid and quick multicolored voltage reporters through electrochromic FRET. Nat. Widespread. 5, 4625 (2014).

17

Gong, Y. et al. Excessive velocity recording of neural peaks in mice and awake flies with a fluorescent voltage sensor. Science 350, 1361-1366 (2015).

18

Shemesh, O.A. et al. Briefly correct optogenetics with unicellular decision. Nat. Neurosci. 20, 1796-1806 (2017).

19

Baker, C.A., Elyada, Y.M., Parra, A. and Bolton, M.M. L. Mapping mobile circuitry with time-focused excitation of the soma-targeted channelrhodopsin. eLife 5, e14193 (2016).

20

Daigle, T. L. et al. A set of transgenic mouse pilot and reporter strains with improved focusing on and performance of the mind cell kind. Cell 174, 465 to 480.e22 (2018).

21

Wu, C., Ivanova, E., Zhang, Y. and Pan, Z. H. RAAV-mediated subcellular focusing on of optogenetic instruments in retinal ganglion cells in vivo. PLoS ONE eight, e66332 (2013).

22

Klapoetke, N.C. et al. Impartial optical excitation of distinct neuronal populations. Nat. Strategies 11, 338-346 (2014).

23

Kravitz, A. V. & Kreitzer, A. C. Striatal mechanisms underlying motion, reinforcement and punishment. Physiology (Bethesda) 27, 167-177 (2012).

24

Koós, T. & Tepper, J. M. Inhibitory management of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467-472 (1999).

25

Zhou, F.M., Wilson, C.J. and Dani, J.A. Cholinergic interneuron traits and nicotinic properties within the striatum. J. Neurobiol. 53, 590-605 (2002).

26

Bittner, Okay.C. et al. Connective entry processing disks exhibit selectivity in CA1 neurons of the hippocampus. Nat. Neurosci. 18, 1133-1142 (2015).

27

Harvey, C., D., Collman, F., Dombeck, D.A. and Tank, D.W. Intracellular dynamics of hippocampal place cells throughout digital navigation. Nature 461, 941-946 (2009).

28

Adam, Y. et al. Pressure imaging and optogenetics reveal modifications in behavioral dynamics of the hippocampus. Nature 569, 413-417 (2019).

29

Hansen, Okay.R. et al. A benign lesion brought on by an explosion ends in acute modifications in intracellular basal calcium ranges and patterns of exercise in mouse hippocampal neurons. J. Neurotrauma 35, 1523-1536 (2018).

30

Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. and Tank, D.W. Imaging of large-scale neuronal exercise with mobile decision, in awake and cell mice. Neuron 56, 43-57 (2007).

31.

Fields, I.E. et al. Noninvasive deep mind stimulation through temporally interfering electrical fields. Cell 169, 1029-1041.e16 (2017).

32

Kalmbach, A.S. & Waters, J. Floor temperature of the mind beneath craniotomy. J. Neurophysiol. 108, 3138-3146 (2012).

33

Podgorski, Okay. & Ranganathan, G. Infrared-induced mind heating throughout multiphoton microscopy. J. Neurophysiol. 116, 1012-1023 (2016).

34

Arias-Gil, G., Ohl, F. W., Takagaki Okay. and T. T. Measurement, modeling and forecast of temperature rise because of optogenetic mind stimulation. Neurophotonics three, 045007 (2016).

35

Stujenske, J.M., Spellman, T. and Gordon, J. A. Modeling the spatiotemporal dynamics of sunshine and warmth propagation for in vivo optogenetics. Cell Rep. 12, 525-534 (2015).

36

Christie, I. N. et al. FMRI response to blue gentle within the naive mind: implications for mixed optogenetic fMRI research. Neuroimage 66, 634-641 (2013).

37

Dell, R.B., Holleran, S. & Ramakrishnan, R. Figuring out the dimensions of the pattern. ILAR J. 43, 207-213 (2002).

Leave a Reply

Your email address will not be published. Required fields are marked *