Nature News

The amplitude and origin of the ocean stage variability within the Pliocene epoch


Masson-Delmotte, V. et al. in Local weather Change 2013: The Fundamentals of Bodily Science. Contribution of Working Group 1 to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Stocker, TF et al.), Ch.5 (Cambridge Univ Press, 2013) ).


Naish, TR & Wilson, GS Mid-Pliocene Sea Degree Fluctuation (Three.6-2.four Ma) Fluctuation Constraints from New Zealand's Shallow Water Sediment Survey . Phil Trans. R. Soc. Lond. A 367, 169-187 (2009).


Lisiecki, L.E. & Raymo, M.E. A Pliocene-Pleistocene stack of 57 δ18O benthic data distributed all through the world. Paleoceanography 20, PA1003 (2005).


Miller, Okay. G. et al. Sizzling Pliocene tide: implications of the worldwide sea stage for deglaciation in Antarctica. Geology 40, 407-410 (2012).


Dutton, A. et al. Elevation of sea stage as a consequence of lack of ice cap mass throughout latest heat durations. Science 349, aaa4019 (2015).


Grant, G. et al. World Imply Pliocene Sea Fluctuations (Three.Three-2.6 Ma) Recorded on a Continental Shelf Transect, Whanganui Basin, New Zealand. Quat. Sci. Rev. 201, 241-260 (2018).


Pollard, D., DeConto, R.M. & Alley, R.B. Potential removing of the Antarctic Ice Sheet attributable to hydrofracturing and breaking an ice cliff. Earth. Sci. Lett. 412, 112-121 (2015).


Rohling, E.J. et al. Variability of sea stage and sea depth over the previous 5.Three million years. Nature 508, 477-482 (2014); Erratum 510, 432 (2014).


Rovere, A. et al. The Pliocene sea stage enigma: glacial isostasis, eustasy and dynamic topography. Earth. Sci. Lett. 387, 27-33 (2014).


Raymo, M.E., Mitrovica, J. X., O'Leary, M.J., DeConto, R.M. and Hearty, P. J. Eutasy departures in Pliocene sea-level data. Nat. Geosci. four, 328-332 (2011).


Evans, D., Brierley, C., Raymo, ME, Erez, J & Müller, W. Chemical responses of the foraminiferal shell to seawater chemistry: change in temperature and stage from the ocean within the Pliocene – Pleistocene seawater. Earth. Sci. Lett. 438, 139-148 (2016).


Gasson, E., DeConto, R.M. and Pollard, D. Modeling the oxygen isotope composition of the Antarctic Ice Sheet and its significance for Pliocene sea stage. Geology 44, 827-830 (2016).


Tapia, C.A. et al. Excessive decision magnetostratigraphy of shallow Center Pliocene marine sediments (Three.Three to Ma), Whanganui Basin, New Zealand. Geophysics J. Int. 217, 41-57 (2019).


van Rijn, L. C. Unified view of sediment transport by currents and waves. I: Initiation of motion, roughness of the mattress and transport of mattress load. J. Hydraul. Eng. 133, 649-667 (2007).


Trewick, S.A. and Bland, Okay. J. Hearth and Trench: Paleogeography for biogeography on the North Island / South Island of New Zealand junction. J. R. Soc. NZ 42, 153-183 (2012).


Kominz, M. & Pekar, S. Oligocene eustasy from two-dimensional stratigraphic stripping sequences. Taurus. Geol. Soc. A m. 113, 291-304 (2001).


Lourens, L.J. et al. Analysis of the astronomical time scale of the Plio-Pleistocene. Paleoceanogr. Paléoclim. 11, 391-413 (1996).


Laskar, J. et al. An extended-term digital answer for the quantities of insolation of the Earth. Astron. Astrophysics 428, 261-285 (2004).


de Boer, B., Haywood, A.M., Dolan, A.M., Hunter, S.J. and Prescott, C.L. The transient response of ice quantity to orbital forcing through the hotter Higher Pliocene interval. Geophysics Res. Lett. 44, 10486-10494 (2017).


Golledge, N. et al. Antarctic local weather and ice cap configuration through the Decrease Pliocene interglacial interval (four.23 Ma). Clim. Final 13 years, 959-975 (2017).


Patterson, M. et al. Orbital forcing of the East Antarctic Ice Sheet through the Pliocene and Decrease Pleistocene. Nat. Geosci. 7, 841-847 (2014).


Jansen, E., Fronval, T., Rack, F. and Channell, J. E. Historical past of Rafting and Biking within the Pliocene-Pleistocene within the Nordic Seas over the past four March. Paleoceanography 15, 709-721 (2000).


Bailey, I. et al. Another suggestion for the early Pliocene of the foremost glaciation of the northern hemisphere based mostly on the geochemical provenance of ice-covered particles from the North Atlantic Ocean. Quat. Sci. Rev. 75, 181-194 (2013).


Lawrence, Okay.T., Herbert, T.D., Brown, C.M., Raymo, M.E. and Haywood, A.M. Massive-amplitude variations in floor temperature of the North Atlantic firstly of the Pliocene. Paleoceanogr. Paléoclim. 24, (2009).


Herbert, T.D., Peterson, L.C., Lawrence, Okay.T. and Liu, Z. Tropical ocean temperatures over the previous Three.5 million years. Science 328, 1530-1534 (2010).


Martínez-Garcia, A. et al. Coupling dust-climate of the Southern Ocean over the past 4 million years. Nature 476, 312-315 (2011).


Shackleton, N.J. et al. Oxygen isotopic calibration of early rafting and the historical past of glaciation within the North Atlantic area. Nature 307, 620 (1984).


Fretwell, P. et al. Bedmap2: Improved information units on ice mattress, floor and thickness for Antarctica. Cryosphere 7, 375-393 (2013).


Naish, T. et al. Oscillations of the Western Pliocene Antarctic Ice Cap on the charge of obliquity. Nature 458, 322 (2009).


Spada, G. et al. Modeling the postglacial rebound of the Earth. Eos 85, 62-64 (2004).


Journeaux, T.D., Kamp, P. J. & Naish, T. R. Center Pliocene Cyclothems, Mangaweka Area, Wanganui Basin, New Zealand: a lithostratigraphic body. NZ J. Geol. Geophysics 39, 135-149 (1996).


Ogg, J. G. Time scale of geomagnetic polarity. In The Geologic Time Scale 2012 (Eds Gradstein, F.M., Ogg, J.G., Schmitz, M. and Ogg, G.) 85-113 (Elsevier, 2012).


Turner, G. M. et al. Coherent magnetostratigraphy of the Center Pliocene, Wanganui Basin, New Zealand. J. R. Soc. NZ 35, 197-227 (2005).


Swift, D. J. The quaternary cabinets and the return to the extent. Mar. Geol. eight, 5-30 (1970).


Wright, J., Colling, A. and Park, D. (eds.) Waves, tides, and processes in shallow waters Vol. four (Gulf Skilled Publishing, 1999).


Dunbar, G. B. and Barrett, P. J. Estimation of the palaeobathymetry of wave-gradient continental cabinets from the feel of sediments. Sedimentology 52, 253-269 (2005).


Komar, P.D. & Miller, M. C. On the comparability between the wave sediment motion threshold and unidirectional currents with a dialogue of the sensible threshold evaluation: Response. J. Sedim. Res. 45, 362-367 (1975).


Grant, G. R. et al. Relative file of Pliocene sea stage in New Zealand, calculated from grain measurement. (PANGEA, 2019).


Chin, J. L. Sedimentation and historical past of late Quaternary coastal deposition, south-central Monterey Bay, California. Ph.D. thesis, San Jose State Univ. (1984).


Beaumont, J., Anderson, T.J. and MacDiarmid, A. B. Natural world of the Patea Shoals space, south of Taranaki Bay. NIWA Consumer Report No. WLG2012-55 (NIWA, 2013).


Hume, T., Gorman, R., Inexperienced, M. and MacDonald, I. Coastal Stability in South Taranaki Bay – Part 2: Potential Results of Sea Sand Mining on Bodily and Environmental Elements coastal stability. NIWA Buyer Report # HAM2013-082 (NIWA, 2013).


Scripps Establishment of Oceanography. CDIP: Coastal Information Info Program. (2018).


MetOcean view. MetOcean View Hindcast. (2017).


McCave, I. N. Effectiveness of seabed waves and its relation to backside types and sludge deposition. J. Sedim. Res. 41, 89-96 (1971).


Coastal Engineering Analysis Heart. Shore Safety Handbook, Vols I and II (US Military Corps, Washington DC, 1984).


Li, X. et al. Western winds of the Center Pliocene from PlioMIP simulations. Adv. Atmos. Sci. 32, 909-923 (2015).


Meyers, S. R. Astrochron: an R package deal for astrochronology. deal=astrochron (2014).


Kominz, M. A. Higher Cretaceous-Miocene sea stage estimates from New Jersey and Delaware coastal plain cores: error evaluation. Basin Res. 20, 211-226 (2008).


Farrell, W. E. & Clark, J. A. On the postglacial sea stage. J. Astron Geophysics. Soc. 46, 647-667 (1976).


Spada, G. & Stocchi, P. SELEN: A Fortran 90 program to resolve "the ocean stage equation". Comput. Geosci. 33, 538-562 (2007).


Stocchi, P. et al. MIS fifth Relative Adjustments in Sea Degree within the Mediterranean Sea: Contribution of Isostatic Imbalance. Quat. Sci. Rev. 185, 122-134 (2018).


Mitrovica, J. X. & Peltier, W. R. On the subsidence of the postglacial geoid above the equatorial oceans. J. Geophys. Res. B 96, 20053-20071 (1991).


Dziewonski, A.M. and Anderson, D.L. Preliminary Land Reference Mannequin. Phys. Earth. Enter. 25, 297-356 (1981).


Peltier, W. R. World glacier isostasis and the Earth's floor of glaciation: the ICE-5G (VM2) and GRACE mannequin. Annu. Rev. Planet Earth. Sci. 32, 111-149 (2004).


de Boer, B., Stocchi, P. and Van De Wal, R. A 3D mannequin coupled ice surface-sea stage: algorithm and purposes. Geosci. Mannequin Dev. 7, 2141-2156 (2014).


Milne, G. A. and Mitrovica, J. X. On the lookout for eustasy within the deglacial sea stage historical past. Quat. Sci. Rev 27, 2292-2302 (2008).


Milne, G.A., Gehrels, W.R., Hughes, C.W. and Tamisiea, M. E. Establish the causes of sea-level change. Nat. Geosci. 2, 471-478 (2009).


Mitrovica, J. X. et al. On the robustness of predictions of fingerprints at sea stage. Geophysics J. Int. 187, 729-742 (2011).


Yamane, M. et al. Age of publicity and constraints of the ice cap mannequin on the dynamics of the japanese Antarctic ice sheet of the Pliocene. Nat. Widespread. 6, 7016 (2015).


Dolan, A.M., de Boer, B., Bernales, J., Hill, D.J. and Haywood, A.M. Dependence of the excessive climatic mannequin of predictions of the Pliocene Antarctic Ice Sheet. Nat. Widespread. 9, 2799 (2018).


Shakun, J.D. et al. East Antarctic ice caps have declined within the final eight million years. Nature 558, 284 (2018).


Hay, C. et al. Fingerprints on the sea-level of the pack ice collapse throughout interglacial durations. Quat. Sci. Rev. 87, 60-69 (2014).


Kopp, R.E. et al. World variability of sea stage as a consequence of temperature within the frequent period. Proc. Natl Acad. Sci. USA 113, E1434 to E1441 (2016); correction. 113, E5694 to E5696 (2016).


Bamber, J.L., R.E., Vermeersen, B.L. and LeBrocq, A.M.Revaluation of the potential sea-level rise ensuing from the collapse of the western Antarctic ice sheet. Science 324, 901-903 (2009).