Nature News

Bimetallene PdMo for catalysis of oxygen discount

1.

Seh, Z. W. et al. Mixture of principle and expertise in electrocatalysis: info on the design of supplies. Science 355, eaad4998 (2017).

2

Jiao, Y., Zheng, Y., Jaroniec, M. and Qiao, S. Z. Design of electrocatalysts for power conversion reactions involving oxygen and hydrogen. Chem. Soc. Rev. 44, 2060-2086 (2015).

three

Debe, M. Ok. Electrocatalytic approaches and challenges for automotive gasoline cells. Nature 486, 43-51 (2012)

four

Suen, N. T. et al. Electrocatalysis for the evolutionary response of oxygen: latest improvement and future prospects. Chem. Soc. Rev. 46, 337-365 (2017).

5

Shao, M., Chang, Q., Dodelet, J.P. and Chenitz, R. Current advances in electrocatalysts for the oxygen discount response. Chem. Rev. 116, 3594-3657 (2016).

6

Nørskov, J. Ok., T. Bligaard, J. Rossmeisl and C. Christensen. In direction of laptop design of strong catalysts. Nat. Chem. 1, 37-46 (2009).

seven.

Stamenkovic, V. R., D. Strmcnik, P. Lopes and P. Markovic, N. M. Vitality and gasoline from electrochemical interfaces. Nat. Mater. 16, 57-69 (2017).

eight

Stephens, I.E., Rossmeisl, J. & Chorkendorff, I. In direction of Sustainable Gasoline Cells. Science 354, 1378-1379 (2016).

9

Luo, M. & Guo, S. Electrocatalysis managed by strains on multimetal nanomaterials. Nat. Rev. Mater. 2, 17059-17072 (2017).

ten.

Escudero-Escribano, M. et al. Adjustment of the exercise of Pt alloy electrocatalysts by contraction of lanthanides. Science 352, 73-76 (2016).

11

Bu, L. et al. The bi-axially constrained PtPb / Pt core / shell nanoplate stimulates oxygen discount catalysis. Science 354, 1410-1414 (2016).

12

Li, M. et al. The ultrafine and serrated platinum nanowires enable extraordinarily excessive mass exercise for the oxygen discount response. Science 354, 1414-1419 (2016).

13

Strasser, P. et al. Community-deformation management of exercise in disused gasoline cell catalysts. Nat. Chem. 2,454-460 (2010).

14

Perez-Alonso, F.J. et al. Impact of dimension on the exercise of oxygen electroreduction of platinum nanoparticles chosen in bulk. Angew. Chem. Int. Ed. 51, 4641-4643 (2012).

15

Wakisaka, M. et al. Pt – Co and Pt – Ru alloy digital constructions for CO – tolerant anodic catalysts in polymer electrolyte gasoline cells studied by EC – XPS brand CNRS brand INIST Accueil / Dwelling Imprimer / Print Contact / Contact Bookmark and Share Mendeley. J. Phys. Chem. B 110, 23489-23496 (2006).

16

Lee, J. et al. XPS research on the superconducting alloy Mo – Ru – Rh – Pd. J. Alloys Compd. 298, 291-294 (2000).

17

Huang, X. Q. et al. Pt3Ni octahedra doped with excessive efficiency transition metals for the oxygen discount response. Science 348, 1230-1234 (2015).

18

Gilroy, Ok.D., Ruditskiy, A., Peng, C., Qin, D. and Xia, Y. Bimetallic nanocrystals: syntheses, properties and functions. Chem. Rev. 116, 10414-10472 (2016).

19

Huang, X. et al. Autonomous palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28-32 (2011).

20

Saleem, F. et al. Nanofilms and ultra-thin nanocones Pt – Cu. Jam. Chem. Soc. 135, 18304-18307 (2013).

21

Duan, H. et al. Extremely-thin rhodium nanofilms. Nat. Frequent. 5, 3093-3101 (2014).

22

Yang, N. et al. Synthesis of ultra-thin PdCu alloy nanowires used as a extremely environment friendly electrocatalyst for the oxidation of formic acid. Adv. Mater. 29, 1700769-1700774 (2017).

23

van der Vliet, D.F. et al. Distinctive electrochemical adsorption properties of platinum pores and skin surfaces. Angew. Chem. Int. Ed. 51, 3139-3142 (2012).

24

Stamenkovic, V.R. et al. Enchancment of oxygen discount exercise on Pt3Ni (111) because of elevated availability of floor websites. Science 315, 493-497 (2007).

25

Shao, M., Odell, J.H., Choi, S.-I. & Xia, Y. Electrochemical measurements of the floor of nanoparticles primarily based on platinum and palladium. Electrochim. Frequent. 31, 46-48 (2013).

26

Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339-1343 (2014).

27

Darling, R.M. & Meyers, J.P. Kinetic mannequin of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523 to A1527 (2003).

28

Lopes, P. P. et al. Relationships between the atomic floor construction and the soundness / exercise of platinum floor atoms in aqueous environments. ACS Catal. 6, 2536-2544 (2016).

29

Nørskov, J.Ok. et al. Origin of the overpotential for the discount of oxygen on the stage of a gasoline cell cathode. J. Phys. Chem. B 108, 17886-1892 (2004).

30

Stamenkovic, V.R. et al. Modification of the exercise of electrocatalysts for the discount of oxygen by optimizing the digital construction of floor. Angew. Chem. Int. Ed. 45, 2897-2901 (2006).

31.

Bu, L. et al. A basic methodology for multimetal platinum alloy nanowires as extremely lively and steady catalysts for oxygen discount. Adv. Mater. 27, 7204-7122 (2015).

32

Jiang, Ok. et al. Efficient catalysis of oxygen discount by nanowires in Pt sub-nanometer alloy. Sci. Adv. three, e1601705 (2017).

33

Li, Y. et al. Variable dimension synthesis of Pd nanowires for adjustable plasmonic properties. CrystEngComm 17, 1833-1838 (2015).

34

Y H-S. et al. The XAFS mild line of SSRF. Nucl. Sci. Expertise. 26, 050102-050108 (2015).

35

Newville, M. IFEFFIT: XAFS Interactive Evaluation and FEFF Adjustment. J. Synchrotron Radiat. eight, 322-324 (2001).

36

Paulus, U.A. et al. Oxygen discount on platinum-based alloys with excessive floor space relative to well-defined clean bulk alloy electrodes. Electrochim. Acta 47, 3787-3798 (2002).

37

Okada, J., Inukai, J. and Itaya, Ok. Quantity and sub-potential deposition of copper on Pd (111) in a sulfuric acid resolution studied by scanning tunneling microscopy in situ. Phys. Chem. Chem. Phys. three, 3297-3302 (2001).

38

Sheng, W., Myint, M., Chen, JG and Yan, Y. Correlation of the response exercise of hydrogen evolution in alkaline electrolytes with binding power hydrogen on monometallic surfaces. Vitality Environ. Sci. 6, 1509-1512 (2013).

39

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio preliminary power calculations utilizing a fundamental set of airplane waves. Phys. Rev. B 54, 11169-11186 (1996).

40

Perdew, J.P., Ok. Burke and Ernzerhof, M. Simplified generalized gradient approximation. Phys. Rev. Lett. 77, 3865-3868 (1996).

41

Blöchl, P. E. Augmented wave methodology with projector. Phys. Rev. B 50, 17953-17979 (1994).

42

Monkhorst, H.J. & Pack, J.D. Specific options for the integrations of the Brillouin zone. Phys. Rev. B 13, 5188-5192 (1976).

43

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1-19 (1995).

44

Zhou, X.W., Johnson, R.A. & Wadley, H.N.G. Lacking power multiplication disruptions in CoFe / NiFe multilayers deposited within the vapor part. Phys. Rev. B 69, 144113-1444123 (2004).

45

Li, Y.G. et al. Superior zinc-air batteries primarily based on excessive efficiency hybrid electrocatalysts. Nat. Frequent. four, 1805-1812 (2013).

46

Nam, G. et al. Carbon – coated Fe – Cu nanoparticles, constituting extremely lively and sturdy electrocatalysts for a Zn – air battery. ACS Nano 9, 6493-6501 (2015).

47

Cui, Z., Li, Y., Fu, G., Li, X. & Goodenough, J. B. Sturdy Fe3Mo3C supported IrMn clusters as a excessive effectivity bifunctional air electrode for metal-air battery. Adv. Mater. 29, 1702385-1702392 (2017).

48.

Cui, Z., Fu, G., Li, Y. and Goodenough, J. B. Ni3Fe supported by Fe3Pt intermetallic nanoalloy, used as a excessive efficiency bifunctional catalyst for metal-air batteries. Angew. Chem. Int. Ed. 56, 9901-9905 (2017).

49

Liu, X. et al. Integration of NiCo alloys with their oxides as environment friendly bifunctional cathodic catalysts for zinc-air rechargeable batteries. Angew. Chem. Int. Ed. 54, 9654-9658 (2015).

50

Winther-Jensen, B., Winter-Jensen, O., Forsyth, M. and Macfarlane, D. Excessive charges of oxygen discount on a polymerized PEDOT electrode within the vapor part. Science 321, 671-674 (2008).

51.

Lee, J.S., Lee, T., Music, H.Ok., Cho, J. and Kim, B. S. Ion-liquid-modified graphene nanosheets anchoring the manganese oxide. Vitality Environ. Sci. four, 4148-4154 (2011).

52.

Zhang, J., Zhao, Z., Xia, Z. and Dai, L. A bifunctional electrocatalyst with out metallic for oxygen discount and launch reactions. Nat. Nanotechnol. 10, 444-452 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *