Nature News

Synaptic proximity permits NMDAR signaling to advertise mind metastases


Lambert, A.W., Pattabiraman, D.R., and Weinberg, R. A. Rising organic ideas of metastasis. Cell 168, 670-691 (2017).


Vanharanta, S. & Massagué, J. Origins of metastatic options. Most cancers Cell 24, 410-421 (2013).


Lin, N. U., Amiri-Kordestani, L., D. Palmieri, Liewehr, D.J. & Steeg, P. S. CNS Metastases in Breast Most cancers: Outdated Problem, New Frontiers. Clin. Most cancers Res. 19, 6404-6418 (2013).


Bos, P.D. et al. The genes that transmit metastasis from breast most cancers to the mind. Nature 459, 1005-1009 (2009).


Sevenich, L. et al. The evaluation of proteolytic networks offered by tumors and stroma reveals a task selling mind metastases for cathepsin S. Nat. Cell Biol. 16, 876-888 (2014).


Valiente, M. et al. Serpins promote most cancers cell survival and vascular cooptation in mind metastases. Cell 156, 1002-1016 (2014).


Chen, Q. et al. The carcinoma-astrocyte junctions favor cerebral metastases by cGAMP switch. Nature 533, 493-498 (2016).


Michael, I. P. et al. ALK7 signaling reveals a homeostatic tissue barrier that’s abrogated throughout tumorigenesis and metastasis. Dev. Cell 49, 409-424 (2019).


Park, E. S. et al. Inter-species hybridization of microarrays to review the tumor transcriptome of mind metastases. Proc. Natl Acad. Sci. USA 108, 17456-17461 (2011).


Neman, J. et al. Metastases of breast most cancers within the mind have GABAergic properties within the neural area of interest. Proc. Natl Acad. Sci. USA 111, 984-989 (2014).


Li, L. & Hanahan, D. Diverting the neuronal NMDAR signaling pathway to advertise tumor progress and invasion. Cell 153, 86-100 (2013).


Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to regulate invasive tumor progress. Most cancers Cell 33, 736-751 (2018).


Robinson, H. P. C. and L. Li, L. Signaling of autocrine, paracrine and necrotic NMDA receptors in neuroendocrine tumor cells of the mouse pancreas. Open Biol. 7, 170221 (2017).


Roche, Okay.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. four, 794-802 (2001).


Takasu, M.A., Dalva, M.B., Zigmond, R.E. and Greenberg, M.E. Modulation of NMDA-receptor-mediated calcium inflow and gene expression by way of EphB receptors. Science 295, 491-495 (2002).


Lavezzari, G., McCallum J., Lee Lee and KKW Differential binding of the AP-2 adapter complicated and PSD-95 on the C-terminus of the NMDA NR2B receptor subunit regulates the floor expression. Neuropharmacology 45, 729-737 (2003).


Nakazawa, T. et al. The phosphorylation of tyrosine NR2B modulates the training of concern in addition to synaptic amygdaloid plasticity. EMBO J. 25, 2867-2877 (2006).


Matsumura, S. et al. Depreciation of CaMKII activation and attenuation of neuropathic ache in mice missing NR2B phosphorylated at Tyr1472. EUR. J. Neurosci. 32, 798-810 (2010).


Knox, R. et al. NR2B phosphorylation at tyrosine 1472 contributes to mind harm in a rodent mannequin of hypoxia-neonatal ischemia. Stroke 45, 3040-3047 (2014).


Levy, A. D. et al. SHP2 related to Noonan dephosphorylate GluN2B syndrome to manage the perform of NMDA receptors. Cell Rep. 24, 1523-1535 (2018).


Ciriello, G. et al. Full molecular portraits of invasive lobular breast most cancers. Cell 163, 506-519 (2015).


Fonnum, F., Storm-Mathisen, J. and Divac, I. Biochemical proof for glutamate as a neurotransmitter within the corticostriatal and corticothalamic fibers of the rat mind. Neuroscience 6, 863-873 (1981).


Briggs, Okay.J. et al. Induction of HIF paracrine by glutamate in breast most cancers: EglN1 detects cysteine. Cell 166, 126-139 (2016).


Takano, T. et al. The discharge of glutamate promotes the expansion of malignant gliomas. Nat. Med. 7, 1010-1015 (2001).


Buckingham, S.C. et al. The discharge of glutamate by major mind tumors induces epileptic exercise. Nat. Med. 17, 1269-1274 (2011).


Danbolt, N. C. Glutamate Absorption. Program. Neurobiol. 65, pp. 1-105 (2001).


Scheiffele, P., Fan, J., Choih, J., Fetter, R. and Serafini, T. Neuroligin expressed in non-neuronal cells set off presynaptic growth in touch with axons. Cell 101, 657-669 (2000).


Fu, Z., Washbourne, P., Ortinski, P. and Vicini, S. Excitatory excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J. Neurophysiol. 90, 3950-3957 (2003).


Stogsdill, J.A. et al. Astrocytic neuroligins management the morphogenesis and synaptogenesis of astrocytes. Nature 551, 192-197 (2017).


Harris, Okay. M. & Weinberg, R. J. Ultrastructure of synapses within the mammalian mind. Chilly Harb Spring. Perspective. Biol. four, a005587 (2012).


Pacifici, M. & Peruzzi, F. Isolation and tradition of rat embryonic neural cells: a fast protocol. J. Vis. Exp. 63, e3965 (2012).


Fellmann, C. et al. A microRNA skeleton optimized for environment friendly single-copy RNAi. Cell Rep. 5, 1704-1713 (2013).


Lorger, M. & Felding-Habermann, B. Seize modifications within the microenvironment of the mind throughout the preliminary phases of cerebral metastasis of breast most cancers. A m. J. Pathol. 176, 2958-22971 (2010).


Amit, M., Na'ara, S. & Gil, Z. Mechanisms of dissemination of most cancers alongside the nerves. Nat. Rev. Most cancers 16, 399-408 (2016).


Ikonomidou, C. and Turski, L. Why have NMDA receptor antagonists failed scientific trials for stroke and traumatic mind damage? Lancet Neurol. 1, 383-386 (2002).


Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: Variation evaluation of gene units for microarray and RNA-seq knowledge. BMC Bioinformatics 14, 7 (2013).


Hatzis, C. et al. A genomic predictor of response and survival following taxane-anthracycline-based chemotherapy for invasive breast most cancers. Jam. Med. Assoc. 305, 1873-1881 (2011).


Weilinger, N. L. et al. The metabotropic NMDA signaling receptor couples Src household kinases to pannexin-1 throughout excitotoxicity. Nat. Neurosci. 19, 432-442 (2016).


Cardona, A. et al. TrakEM2 software program for the reconstruction of neural circuits. PLoS One 7, e38011 (2012).


Fellmann, C. et al. A microRNA skeleton optimized for environment friendly single-copy RNAi. Cell Rep. 5, 1704-1713 (2013).


Vargas-Caballero, M. & Robinson, H. P. C. Fast and gradual dynamics of magnesium block depending on the voltage within the NMDA receptor: the mannequin of the uneven trapping block. J. Neurosci. 24, 6171-6180 (2004).


Kim, NK & Robinson, H.P. C. Results of divalent cations on gradual launch of native NMDA receptors in mouse neocortical pyramidal neurons. EUR. J. Neurosci. 34, 199-212 (2011).


Shchors, Okay., Massaras, A. and Hanahan, D. Twin concentrating on of the autophagic regulatory circuit in gliomas with reused medicine leads to deadly cell autophagy and therapeutic profit. Most cancers Cell 28, 456-471 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *