Nature News

Glutamatergic synaptic consumption to glioma cells results in development of mind tumors


Scherer, H. J. A essential examination: the pathology of cerebral gliomas. J. Neurol. Psychiatry Three, 147-177 (1940).


Venkatesh, H.S. et al. The neuronal exercise promotes the expansion of gliomas through the secretion of neuroligin-Three. Cell 161, 803-816 (2015).


Venkatesh, H.S. et al. Goal neuroligin-Three dependence regulated by neuronal exercise in high-grade gliomas. Nature 549, 533-537 (2017).


Ishiuchi, S. et al. Blockade of AMPA Ca2 + receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. eight, 971-978 (2002).


Takano, T. et al. The discharge of glutamate promotes the expansion of malignant gliomas. Nat. Med. 7, 1010-1015 (2001).


Savaskan, N.E. et al. Small interfering RNA-mediated xCT neutralisations inhibit neurodegeneration and attenuate cerebral edema. Nat. Med. 14, 629-632 (2008).


Rzeski, W., Turski, L. and Ikonomidou, C. Glutamate antagonists restrict tumor development. Proc. Natl Acad. Sci. USA 98, 6372-6377 (2001).


Li, L. & Hanahan, D. Diverting the neuronal NMDAR signaling pathway to advertise tumor development and invasion. Cell 153, 86-100 (2013).


Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to regulate invasive tumor development. Most cancers Cell 33, 736-751 (2018).


Osswald, M. et al. Tumor cells of the mind interconnect to a practical and resistant community. Nature 528, 93-98 (2015).


Jung, E. et al. Tweety-homologue 1 causes cerebral colonization of gliomas. J. Neurosci. 37, 6837-6850 (2017).


Weil, S. et al. Tumor microtubes confer resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19, 1316-1326 (2017).


Zhu, Z. et al. Concentrating on self-renewal in high-grade mind tumors ends in the lack of stem cells from the mind tumor and extended survival. Cell Stem Cell 15, 185-198 (2014).


Harris, Okay. M. & Weinberg, R. J. Ultrastructure of synapses within the mammalian mind. Chilly Harb Spring. Perspective. Biol. four, a005587 (2012).


Grey, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: electron microscopic examine. J. Anat. 93, 420-433 (1959).


Venteicher, A. S. et al. Decoupling of genetics, lineages and microenvironment in IDH mutant gliomas by sequencing of unicellular RNA. Science 355, eaai8478 (2017).


Darmanis, S. et al. Monocellular RNA evaluation of infiltrating neoplastic cells on the brow in migration of human glioblastoma. Cell Experiences 21, 1399-1410 (2017).


Maas, S., Patt, S., Schrey, M. and Wealthy, A. Underfunding glutamate receptor mRNA, GluR-B, in malignant gliomas. Proc. Natl Acad. Sci. USA 98, 14687-14692 (2001).


Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P.H. Modification of RNA within the mind controls a determinant of the flux of ions in glutamate channels. Cell 67, 11-19 (1991).


Burnashev, N., Monyer, H., Seeburg, P.H. and Sakmann, B. The divalent ion permeability of the AMPA receptor channels is dominated by the modified type of a single subunit. Neuron eight, 189-198 (1992).


Dalva, M.B., McClelland, A.C. and Kayser, M.S. Molecules of Cell Adhesion: Signaling Features on the Synapse. Nat. Rev. Neurosci. eight, 206-220 (2007).


John Lin, C.C. et al. Identification of varied populations of astrocytes and their malignant analogues. Nat. Neurosci. 20, 396-405 (2017).


Mosbacher, J. et al. A molecular determinant of desensitization lower than millisecond of glutamate receptors. Science 266, 1059-1062 (1994).


Traynelis, S.F. et al. Ionic channels of the glutamate receptor: construction, regulation and performance. Pharmacol. Rev. 62, 405-496 (2010).


Bergles, D.E., Diamond, J.S. and Jahr, C. E. Glutamate launch inside the synapse and past. Curr. Opin. Neurobiol. 9, 293-298 (1999).


Korber, V. et al. The evolutionary trajectories of IDHWT glioblastomas reveal a standard path of early tumorigenesis, instigated years earlier than the preliminary analysis. Most cancers Cell 35, 692-704e612 (2019).


Patel, A.P. et al. Monocellular RNA-seq highlights intratumoral heterogeneity within the main glioblastoma. Science 344, 1396-1401 (2014).


Chaichana, Okay. L., Parker, S.L., Olivi, A. and Quiñones-Hinojosa, A. Lengthy-term seizure outcomes in grownup sufferers present process main resection of malignant astrocytomas to the mind. J. Neurosurg. 111, 282-292 (2009).


Weller, M., Stupp, R. & Wick, W. Epilepsy meets most cancers: when, why and what to do? Lancet Oncol. 13, e375 to e382 (2012).


Ohtaka-Maruyama, C. et al. Synaptic transmission of neurons from the subplate controls the radial migration of neocortex neurons. Science 360, 313-317 (2018).


de Groot, J. & Sontheimer, H. Glutamate and glioma biology. Glia 59, 1181-1189 (2011).


Izumoto, S. et al. Seizures and tumor development in sufferers with glioma with uncontrollable epilepsy handled with perampanel. Anticancer Res. 38, 4361-4366 (2018).


Venkatesh, H. et al. Electrical and synaptic integration of glioma in neuronal circuits. Nature (2019).


Gibson, E. M. et al. Neuronal exercise promotes oligodendrogenesis and adaptive myelination within the mammalian mind. Science 344, 1252304 (2014).


Buckingham, S.C. et al. The discharge of glutamate by main mind tumors induces epileptic exercise. Nat. Med. 17, 1269-1274 (2011).


Huberfeld, G. & Vecht, C. J. Convulsions and gliomas – for a singular therapeutic method. Nat. Rev. Neurol. 12, 204-216 (2016).


Verhaak, R.G. et al. Built-in genomic evaluation identifies clinically related glioblastoma subtypes, characterised by abnormalities of PDGFRA, IDH1, EGFR and NF1. Most cancers Cell 17, 98-110 (2010).

Leave a Reply

Your email address will not be published. Required fields are marked *