Nature News

X-ray pumping of the 229The isomer of the nuclear clock


Beck, B.R. et al. Power division of the doublet within the floor state within the 229Th core. Phys. Rev. Lett. 98, 142501 (2007).


Beck, B.R. et al. Improved worth for vitality cut up of the double floor state within the 229mTh core. Report No. LLNL-PROC-415170 (Lawrence Livermore Nationwide Laboratory, 2009).


Kroger, L.A. & Reich, C.W. Traits of the 229Th vitality low degree scheme noticed in α decay of 233U. Nucl. Phys. A 259, 29-60 (1976).


Helmer, R.G. & Reich, C.W. An excited state of 229Th at three.5 eV. Phys. Rev. C 49, 1845-1858 (1994).


Peik, E. & Tamm, C. Nuclear Laser Spectroscopy of the three.5 eV Transition in Th-229. Europhys. Lett. 61, 181-186 (2003).


Matinyan, S. Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199-249 (1998).


Flambaum, V. V. Elevated impact of temporal variation of wonderful construction fixed and robust interplay within the 229Th. Phys. Rev. Lett. 97, 092502 (2006).


Flambaum, V. V. Reinforce the impact of Lorentz invariance and the violation of the precept of Einstein equivalence in nuclei and atoms. Phys. Rev. Lett. 117, 072501 (2016).


Campbell, C.J. et al. Single ion nuclear clock for metrology at 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).


Kazakov, G.A. et al. Efficiency of a nuclear clock within the stable state 229Thorium. New J. Phys. 14, 083019 (2012).


Peik, E. & Okhapkin, M. Nuclear clocks primarily based on resonant excitation of γ transitions. C. R. Phys. 16, 516-523 (2015).


von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47-51 (2016).


Takano, T. et al. Geopotential measurements with synchronously synchronous optical community clocks. Nat. Photon. 10, 662-666 (2016).


Hayes, A. C. and Friar, J. L. Sensitivity of nuclear transition frequencies to temporal variation of wonderful construction fixed or sturdy interplay. Phys. Lett. B 650, 229 (2007).


Berengut, J.C. et al. Experimental methodology proposed to find out the α sensitivity of the division between soil isomeric states and seven.6 eV in 229Th. Phys. Rev. Lett. 102, 210801 (2009).


Thielking, J. et al. Laser spectroscopic characterization of the 229mTh nuclear clock isomer. Nature 556, 321-325 (2018).


Seiferle, B. et al. Power of the 229th Nuclear Nuclear Clock Transition (2019).


Jeet, J. et al. Outcomes of a direct analysis utilizing synchrotron radiation for the 229Th low vitality nuclear isomer transition. Phys. Rev. Lett. 114, 253001 (2015).


Yamaguchi, A. et al. Experimental analysis of the low vitality nuclear transition within the 229Th with inverter radiation. New J. Phys. 17, 053053 (2015).


Stellmer, S. et al. Try of optical excitation of the nuclear isomer in 229Th. Phys. Rev. A 97, 062506 (2018).


Browne, E. & Tuli, J. Ok. Nuclear Knowledge Sheets for A = 229. Nucl. Knowledge Sheets 11, 2657-2724 (2008).


Seto, M. Condensed matter physics utilizing nuclear resonant scattering. J. Phys. Soc. Jpn. 82, 021016 (2013).


Yabashi, M. et al. Design of a lightweight line for the lengthy inverter supply SPring-Eight 1. Nucl. Instrum. Phys. Strategies Res. A 467-468, 678-681 (2001).


Krywka, C. et al. Polymeric compound refractive lenses for onerous X-ray nanofocusing. AIP Conf. Proc. 1764, 020001 (2016).


Masuda, T. et al. X-ray vitality response below excessive flux circumstances utilizing skinny APD for an vitality vary of 6 to 33 keV. Nucl. Instrum. Phys. Strategies Res. A 913, 72-77 (2019).


Masuda, T. et al. Quick x-ray detector with simultaneous measurement of synchronization and vitality for a single photon. Rev. Sci. Instrum. 88, 063105 (2017).


Bond, W. L. Dedication of precision community fixed. Acta Crystallogr. 13, 814-818 (1960).


Raboud, P.-A., Dousse, J.-Cl., Hoszowska, J. & Savoy, I. L
1 12 months
5 thorium and uranium widths on the atomic degree deduced from measurements of the X-ray spectra of L and M. Phys. Rev. A 61, 012507 (1999).


Firestone, R.B. et al. Desk of isotopes eighth version (John Wiley & Sons, 1996).


Yoshimi, A. et al. Resonant quick response nuclear diffusion experiment: photonuclear excitation of 201Hg. Phys. Rev. C 97, 024607 (2018).


Berger, M.J. et al. NIST XCOM Photon Part Database: Photon Part Database (Model 1.5) (Nationwide Institute of Know-how and Requirements, 2010).


Barci, V. et al. Nuclear construction of 229Th in keeping with the research of γ-ray spectroscopy of the particle decay of 233U. Phys. Rev. C 68, 034329 (2003).


Tkalya, E.V. et al. Radiative lifetime and vitality of low vitality isomeric degree in 229Th. Phys. Rev. C 92, 054324 (2015).


Kazakov, G.A. et al. Views of vitality measurement of 229Th isomers utilizing a metallic magnetic microcalorimeter. Nucl. Instrum. Phys. Strategies Res. A 735, 229-239 (2014).


Seiferle, B., von Wense, L. & Thirolf, P. G. Life Cycle Measurement of the 229Th Nuclear Isomer. Phys. Rev. Lett. 118, 042501 (2017).


Cavagnero, G. et al. Repetitions measurement of the Si community spacing (220). Metrologia 41, 56-64 (2004).


Cavagnero, G. et al. Erratum: Measurement repetitions of the Si community spacing (220). Metrologia 41, 445-446 (2004).


Fujimoto, H. et al. Characterization of the homogeneity of silicon monocrystals community spacing by a self-referenced community comparator. Metrologia 48, S55 to S61 (2011).


Schoedel, R. & Boensch, G. Correct interferometric measurements on monocrystalline silicon giving coefficients of thermal enlargement from 12 ° C to 28 ° C and compressibility. Proc. SPIE 4401, 54-62 (2001).


Lyon, Ok.G., Salinger, G.L., Swenson, C.A. and White, G.Ok.Small linear thermal enlargement measurements on silicon from 6 to 340 Ok. J. Appl. Phys. 48, 865-868 (1977).


Corridor, J. J. Digital results in elastic constants of n-type silicon. Phys. 161, 756-761 (1967).


Watanabe, T., Kon, M., Nabeshima, N. & Taniguchi, Ok. An angle encoder for very excessive decision and really excessive accuracy utilizing SelfA. Meas. Sci. Technol. 25, 065002 (2014).


Seto, M. et al. Nuclear resonance diffusion of synchrotron radiation by 40Ok. Phys. Rev. Lett. 84, 566-569 (2000).


Tanabashi, M. et al. Examination of particle physics. Phys. Rev. D 98, 030001 (2018).


Scofield, J. H. Theoretical photoionization sections from 1 to 1500 keV. Report No. UCRL-51326 (Lawrence Livermore Laboratory, 1973).


Kibedi, T. et al. Analysis of the theoretical conversion coefficients utilizing BrIcc. Nucl. Instrum. Phys. Strategies Res. A 589, 202-222 (2008).

Leave a Reply

Your email address will not be published. Required fields are marked *