Nature News

The early Pleistocene enamel proteome of Dmanisi resolves Stephanorhinus phylogeny

1.

Cappellini, E. et al. Outdated biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029-1060 (2018).

2

Dabney, J., Meyer, M. and Pääbo, S. Damages to the previous DNA. Chilly Harb Spring. Perspective. Biol. 5, a012567 (2013).

three

Meyer, M. et al. Nuclear DNA sequences from the hominins of the Center Pleistocene Sima de los Huesos. Nature 531, 504-507 (2016).

four

Wadsworth, C. & Buckley, M. Degradation of the proteome in fossils: research of the longevity of protein survival in historic bones. Frequent quick. Spectrom. Mass 28, 605-615 (2014).

5

Schweitzer, M.H. et al. Tyrannosaurus rex mushy tissue assays recommend the presence of protein. Science 316, 277-280 (2007).

6

Schroeter, E.R. et al. Growth of the sequence of Brachylophosaurus canadensis collagen I and additional proof of the preservation of Cretaceous protein. J. Proteome Res. 16, 920-932 (2017).

seven.

Willerslev, E. et al. The evaluation of full mitochondrial genomes from extinct and extant rhinos reveals an absence of phylogenetic decision. BMC Evol. Biol. 9, 95 (2009).

eight

Welker, F. et al. Pleistocene protein sequences of the type of rhinoceros Stephanorhinus and the phylogeny of the present / extinct Rhinocerotidae of the Center / Late Pleistocene. PeerJ 5, e3033 (2017).

9

Kirillova, I. et al. Discovery of the cranium of Stephanorhinus kirchbergensis (Jäger, 1839) over the Arctic Circle. Quat. Res. 88: 537-550 (2017).

ten.

Lordkipanidze, D. et al. A whole cranium from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342, 326-331 (2013).

11

Eastoe, J. E. Natural matrix of tooth enamel. Nature 187, 411-412 (1960).

12

Orlando, L. et al. Recalibrate the evolution of Equus utilizing the genome sequence of an early Center Pleistocene horse. Nature 499, 74-78 (2013).

13

Demarchi, B. et al. Protein sequences linked to mineral surfaces persist in deep time. eLife 5, e17092 (2016).

14

Welker, F. et al. Historical proteins remedy the evolutionary historical past of Darwin's ungulates in South America. Nature 522, 81-84 (2015).

15

Chen, F. et al. A decrease center Pleistocene Denisovan mandible of the Tibetan plateau. Nature 569, 409-412 (2019).

16

Nei, M. Molecular Evolutionary Genetics Vol. 75, 39-63 (Columbia Univ Press, 1987).

17

Buckley, M., Warwood, S., van Dongen, Kitchener, A.C. and Manning, P.L., a fossil protein chimera; difficulties in distinguishing dinosaur peptide sequences from trendy cross-contamination. Proc. R. Soc. Lond. B 284, 20170544 (2017).

18

Gabunia, L. et al. The earliest cranial stays of the Pleistocene hominids of Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019-1025 (2000).

19

Ferring, R. et al. The primary human settlements in Dmanisi (Georgian Caucasus) return to 1.85-1.78 Ma. Proc. Natl Acad. Sci. USA 108, 10432-10436 (2011).

20

Castiblanco, G.A. et al. Identification of the proteins of everlasting human enamel in eruption. EUR. J. Oral Sci. 123, 390-395 (2015).

21

Stewart, N.A. et al. The identification of peptides by nanoLC-MS / MS from human dental enamel on account of easy acid assault extraction. RSC Advances 6, 61673-61679 (2016).

22

van Doorn, N.L., J. Wilson, H. Hollund, M. Soressi and M. Collins, J. J. Website-specific glutamine desamidation: a brand new marker of bone collagen deterioration. Frequent quick. Spectrom. Mass 26, 2319-2327 (2012).

23

Catak, S., Monard, G., Aviyente, V. and Ruiz-López, M. F. Pc research on the cleavage of the non-enzymatic peptide bond on the stage of asparagine and aspartic acid. J. Phys. Chem. A 112, 8752-8761 (2008).

24

Hunter, T. Why nature selected phosphate to change proteins. Phil Trans. R. Soc. Lond. B 367, 2513-2516 (2012).

25

Hu, J.C.C., Yamakoshi, Y., Yamakoshi, F., Krebsbach, P.H. and Simmer, J.P. Proteomics and Genetics of Dental Enamel. Cells Tissues Organs 181, 219-231 (2005).

26

Tagliabracci, V. S. et al. The secreted kinase phosphorylates the extracellular proteins that regulate biomineralization. Science 336, 1150-1153 (2012).

27

Cleland, T. P. Stable digestion of demineralized bones as a technique of entry to probably insoluble proteins and post-translational modifications. J. Proteome Res. 17: 536-542 (2018).

28

Antoine, P.-O. et al. A evaluation of Aceratherium blanfordi Lydekker, 1884 (Mammalia: Rhinocerotidae) of the Decrease Miocene of Pakistan: postcranials as a key. Zool. J. Linn. Soc. 160, 139-194 (2010).

29

Steiner, C.C. & Ryder, O. A. Molecular phylogeny and evolution of perissodactyl. Zool. J. Linn. Soc. 163, 1289-1303 (2011).

30

Hobolth, A., Dutheil, J., Hawks, J., Schierup, MH & Mailund, T. Incomplete lineage sorting schemes in people, chimpanzees, and orangutans recommend speciation current and widespread number of orangutans. Genome Res. 21, 349-356 (2011).

31.

Rieseberg, L. H. Evolution: substitute of genes and traits by hybridization. Curr. Biol. 19, R119 to R122 (2009).

32

Guerin, C. Rhinoceroses (Mammalia, Perissodactyla) from the Late Pleistocene Miocene Terminal in Western Europe, Comparability with Present Species (Claude-Bernard Univ., Quantity 79) 1980).

33

Deng, T. et al. Out of Tibet: a woolly rhinoceros pliocene suggests the origin, within the highlands, megaherbivores of the ice age. Science 333, 1285-1288 (2011).

34

Orlando, L. et al. The evaluation of historic DNA reveals the evolutionary relations of woolly rhinos. Mol. Phylogenet. Evol. 28, 485-499 (2003).

35

Yuan, J. et al. Older Coelodonta antiquitatis DNA sequences in China reveal its divergence and phylogeny. Sci. China Earth Sci. 57, 388-396 (2014).

36

Penkman, Okay.E.H., Kaufman, D.S., Maddy, D. & Collins, M.J. Closed system conduct of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Géochronol. three, 2-25 (2008).

37

Hendy, J. et al. A information for research of historic proteins. Nat. College. Evol. 2, 791-799 (2018).

38

Wiśniewski, J.R., Zougman, A., Nagaraj, N. and Mann, M. Common pattern preparation methodology for the evaluation of the proteome. Nat. Strategies 6, 359-362 (2009).

39

Cappellini, E. et al. Decision of the kind of Asian elephant materials, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222-232 (2014).

40

Kulak, N.A., Pichler G., Paron I., Nagaraj N. and Mann M.M. Minimal, therapy of an encapsulated proteomic pattern utilized to the estimation of the variety of copies in eukaryotic cells. Nat. Strategies 11, 319-324 (2014).

41

Mackie, M. et al. Paleoproteomic profile of conservation layers on a 14th century Italian mural. Angew. Chem. Int. Edn 57, 7369-7374 (2018).

42

Cappellini, E. et al. Proteomic evaluation of a Pleistocene mammoth mammoth reveals greater than 100 previous bone proteins. J. Proteome Res. 11, 917-926 (2012).

43

Cox, J. & Mann, M. MaxQuant enable excessive peptide identification charges, individualized mass accuracies within the vary p.p.b. Nat. Biotechnol. 26, 1367-1372 (2008).

44

Zhang, J. et al. PEAKS DB: database assisted by de novo sequencing for the seek for delicate and correct peptide identification. Mol. Cell. Proteomics 11, M111.010587 (2012).

45

The UniProt Consortium. UniProt: the common information base on proteins. Nucleic Acids Res. 45, D158 to D169 (2017).

46

O. Leary, N.A. et al. NCBI reference sequence database (RefSeq): present standing, taxonomic growth and practical annotation. Nucleic Acids Res. 44, D733 to D745 (2016).

47

Welker, F. et al. Paleoproteomic proof identifies archaic hominins related to Chatelperronian on the Reindeer Cave. Proc. Natl Acad. Sci. USA 113, 11162-11167 (2016).

48.

Kearse, M. et al. Geneious Primary: an built-in and scalable desktop software program platform for organizing and analyzing sequence knowledge. Bioinformatics 28, 1647-1649 (2012).

49

Gabriels, R., Martens, L. and Degroeve, S. The up to date MS2PIP Net Server gives a quick and correct peak depth prediction on MS2 for a number of fragmentation strategies, devices, and labeling strategies. . Nucleic Acids Res. 47, W295-299 (2019).

50

Tyanova, S., Temu, T. & Cox, J. The MaxQuant Computing Platform for Proteomics of Shotguns Based mostly on Mass Spectrometry. Nat. Protocols 11, 2301 to 2319 (2016).

51.

Colaert, N., Okay. Helsens, L. Martens, J. Vandekerckhove and Okay. Gevaert. Improved visualization of protein consensus sequences by iceLogo. Nat. Strategies 6, 786-777 (2009).

52.

Korneliussen, T.S., Albrechtsen, A. & Nielsen, R. ANGSD: Subsequent Technology Sequencing Knowledge Evaluation. BMC Bioinformatics 15, 356 (2014).

53

Briggs, A. W. et al. Elimination of deaminated cytosines and detection of in vivo methylation in historic DNA. Nucleic Acids Res. 38, e87 (2010).

54

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a brand new technology of analysis applications in protein databases. Nucleic Acids Res. 25, 3389-3402 (1997).

55

Sea Urchin genome sequencing consortium. The ocean urchin genome Strongylocentrotus purpuratus. Science 314, 941-952 (2006).

56.

Katoh, Okay. & Frith, M. C. Add unaligned sequences in an current alignment with the assistance of MAFFT and LAST. Bioinformatics 28, 3144-3146 (2012).

57

Schliep, Okay. P. phangorn: Phylogenetic Evaluation in R. Bioinformatics 27, 592-593 (2011).

58.

Guindon, S. et al. New algorithms and strategies for estimating most probability phylogeny: efficiency analysis of PhyML three.zero. Syst. Biol. 59, 307-321 (2010).

59

Ronquist, F. et al. MrBayes three.2: Efficient Bayesian phylogenetic inference and mannequin selection in a big mannequin area. Syst. Biol. 61, 539-542 (2012).

60.

Rohland, N. & Hofreiter, M. Comparability and optimization of the previous DNA extraction. Biotechniques 42, 343-352 (2007).

61.

Meyer, M. & Kircher, M. Illumina Preparation of the sequencing library for the seize and sequencing of extremely multiplexed targets. Chilly Harb Spring. Protoc. 2010, pdb.prot5448 (2010).

62

Schubert, M. et al. Characterization of historic and trendy genomes by SNP detection and phylogenomic and metagenomic evaluation utilizing PALEOMIX. Nat. Protocols 9, 1056-1082 (2014).

63.

Li, H. & Durbin, R. Quick and correct quick studying alignment with the Burrows – Wheeler transformation. Bioinformatics 25, 1754-1760 (2009).

64.

Dickinson, M.R., Lister, A.M. and Penkman, Okay.E.H. A brand new methodology of courting the racemization of enamel amino acids: a closed system method. Quat. Géochronol. 50, 29-46 (2019).

Leave a Reply

Your email address will not be published. Required fields are marked *