Nature News

Architectural supplies reconfigurable electrochemically

1.

Krödel, S., T. Delpero, A. Bergamini, Ermanni, P. and Kochmann, D. M. Impartial acoustically managed 3D acoustically impartial microlixeaux and quasi-static elasticity modules. Adv. Eng. Mater. 16, 357-363 (2014).

2

Babaee, S. et al. Versatile metamaterials in 3D with a unfavorable Poisson's ratio. Adv. Mater. 25, 5044-5049 (2013).

three

Valentine, J. et al. Three-dimensional optical metamaterial with unfavorable refractive index. Nature 455, 376-379 (2008).

four

He, H. et al. Topological unfavorable refraction of floor acoustic waves in a Weyl phonon crystal brand CNRS brand INIST. Nature 560, 61-64 (2018).

5

Meza, L. R., Das, S. and Greer, J. R. Three-dimensional strong, mild and recoverable three-dimensional ceramic nano-arrays. Science 345, 1322-1326 (2014).

6

Bauer, J., Schroer, A., Schwaiger, R. and Kraft, O. Method to theoretical resistance in glassy carbon nanolucents. Nat. Mater. 15, 438-443 (2016).

7.

Dou, N. G., Jagt, R. A., Portela, C. M., Greer, J. R. & Minnich, A. J. Ultralow. Thermal conductivity and mechanical resilience of architectural nanolatics. Nano Lett. 18, 4755-4761 (2018).

eight

Overvelde, J.T.B., Weaver, J.C., Hoberman, C. and Bertoldi, Okay. Rational design of reconfigurable prismatic architectural supplies. Nature 541, 347-352 (2017).

9

Coulais, C., Teomy, E., De Reus, Okay., Shokef, Y. and Van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529-532 (2016).

ten.

Fu, H. et al. Morpable 3D mesostructures and microelectronic units by multistable buckling mechanics. Nat. Mater. 17, 268-276 (2018).

11

Shan, S. et al. Multistable architectural supplies to seize elastic stress vitality. Adv. Mater. 27, 4296- 4301 (2015).

12

Haghpanah, B., L. Salari-Sharif, P. Pourrajab, J. Hopkins and Valdevit, L. Reconfigurable architectural supplies with multistable kind. Adv. Mater. 28, 7915-7920 (2016).

13

Kang, S.H. et al. Rupture of reversible symmetry induced by buckling and amplification of chirality with the help of supported mobile constructions. Adv. Mater. 25, 3380-3385 ​​(2013).

14

Sydney Gladman, A., Matsumoto, E., Nuzzo, R., G., Mahadevan, L. and Lewis, J. A. Biomimetic, 4D printing. Nat. Mater. 15, 413-418 (2016).

15

Kang, S.H. et al. Advanced ordered fashions in mechanical instability induced geometrically annoyed triangular cell constructions. Phys. Rev. Lett. 112, 098701 (2014).

16

Liu, J. et al. Exploit deformation to design architectural supplies with efficient unfavorable swelling. Adv. Mater. 28, 6619-6624 (2016).

17

Kim, Y., Yuk., H., Zhao, R., Chester, S.A., and Zhao, X. Ferromagnetic area printing for fast-processing unprocessed tender supplies. Nature 558, 274-279 (2018).

18

Coulais, C., Kettenis, C. and van Hecke, M. A attribute size scale causes irregular measurement results and restrict programmability in mechanical metamaterials. Nat. Phys. 14, 40-44 (2018).

19

Bertoldi, Okay., Vitelli, V., Christensen, J. and van Hecke, M. Versatile mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

20

Kelly, A. & Knowles, Okay. M. Crystallography and crystalline defects (Wiley & Sons, 2012).

21

McDowell, M. T., Lee, S.W., Nix, W.D. & Cui, Y. Article for the 25th Anniversary: ​​Understanding the Lithiation of Silicon and Different Alloy Anodes for Lithium Ion Batteries. Adv. Mater. 25, 4966-4985 (2013).

22

Liu, X.H. et al. Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495-1503 (2013).

23

Baggetto, L., Danilov, D. & Notten, P. H. Structured honeycomb silicon: exceptional morphological modifications induced by electrochemical (de) lithiation. Adv. Mater. 23, 1563-1566 (2011).

24

Bhandakkar, T. Okay. & Johnson, H. T. Stress induced diffusion within the buckling of battery electrodes. J. Mech. Phys. Solids 60, 1103-1121 (2012).

25

Obrovac, M.N. & Chevrier, V.L. Unfavourable alloy electrodes for Li-ion batteries. Chem. Rev. 114, 11444-11502 (2014).

26

Huang, S. & Zhu, T. Atomic mechanisms of insertion of lithium into amorphous silicon. J. Energy Sources 196, 3664-3668 (2011).

27

Chan, C.Okay. et al. Excessive efficiency lithium battery anodes utilizing silicon nanowires. Nat. Nanotechnol. three, 31-35 (2008).

28

Liu, J. et al. C @ Si @ C nanotube matrix Li-ion battery anodes with a sandwich construction, mechanically and chemically sturdy. ACS Nano 9, 1985-1994 (2015).

29

Di Leo, C.V., Rejovitzky, E. & Anand, L. Diffusion-strain concept for amorphous silicon anodes: the position of plastic pressure on electrochemical efficiency. Int. J. Solids Struct. 67-68, 283-296 (2015).

30

Wu, H. et al. Steady cycle of double walled silicon nanotube battery anodes through strong electrolyte interphase management. Nat. Nanotechnol. 7, 310-315 (2012).

31.

Xia, X., Di Leo, C.V., Gu, X.W. and Greer, J. R. In situ lithiation-delithiation of mechanically sturdy Cu-Si core-shell nanolengths in a scanning electron microscope. ACS Vitality Lett. 1, 492-499 (2016).

32

Nix, W. D. & Clemens, B. M. Crystallite coalescence: a mechanism for intrinsic tensile stresses in skinny movies. J. Mater. Res. 14, 3467-3473 (1999).

33

Nowak, U. & Usadel, Okay. D. Area construction in random Ising magnets. Phys. Rev. B 46, 8329-8335 (1992).

34

Landau, D. P. & Binder, Okay. Information to Monte Carlo Simulations in Statistical Physics (Cambridge Univ Press, 2015).

35

Sahni, P.S., Grest, G.S., Anderson, M.P. & Safran, S.A. – Kinetics of order in two dimensions. II. Methods off. Phys. Rev. B 28, 2705-2716 (1983).

36

Cornell, S. & Stinchcombe, R. Freezing in a two-dimensional Glauber system beneath steady cooling. Phys. Rev. B 45, 2725-2738 (1992).

37

Shokef, Y., Suslov, A. and Lubensky, T. C. Order by dysfunction within the mannequin of antiferromagnetic Ising on an elastic triangular lattice. Proc. Natl Acad. Sci. USA 108, 11804-11809 (2011).

38

Chen, Y., Li, T., Scarpa, F. and Wang, L. Trellis metamaterials with mechanically adjustable Poisson's ratio for vibration management. Phys. Rev. Appl. 7, 024012 (2017).

39

Restrepo, D., Mankame, N.D. & Zavattieri, P.D. Section-transforming cell supplies. Excessive Mech. Lett. four, 52-60 (2015).

40

Correa, D.M. et al. Nest of bees with unfavorable rigidity for a recoverable insulation of shocks. Quick prototype. J. 21, 193-200 (2015).

41

Körner, C. and Liebold-Ribeiro, Y. A scientific strategy to determine mobile auxetic supplies. Good Mater. Struct. 24, 025013 (2015).

42

Clausen, A., Wang, F., Jensen, J.S., Sigmund, O. and Lewis, J. A. Optimized architectures for Poisson-programmable topology over giant deformations. Adv. Mater. 27, 5523-5527 (2015).

43

Liebold-Ribeiro, Y. & Körner, C. Inter-band gaps in periodic mobile supplies. Adv. Eng. Mater. 16, 328-334 (2014).

44

Cha, J. & Daraio, C. Electrical regulation of the propagation of elastic waves in nanomechanical networks at MHz frequencies. Nat. Nanotechnol. 13, 1016-1020 (2018).

45

Süsstrunk, R. & Huber, S. D. Statement of helical helical edge states in a mechanical topological insulator. Science 349, 47-50 (2015).

46

Süsstrunk, R. & Huber, S. D. Classification of topological phonons in linear mechanical metamaterials. Proc. Natl Acad. Sci. USA 113, E4767 to E4775 (2016).

47

Fahrenkrug, E., Gu, J. and Maldonado, S. Formation of Electrochemical Alloys of InAs Crystalline Skinny Movies at Room Temperature in Aqueous Electrolytes. Chem. Mater. 26, 4535-4543 (2014).

48.

Wang, Y., Xu, H., Zhang, J. and Li, G. Electrochemical sensors for medical evaluation. Sensors eight, 2043-2081 (2008).

49

Jager, E.W.H., Smela, E. & Ingana, O. Microfabricated conjugate polymer actuators. Science 290, 1540-1545 (2000).

Leave a Reply

Your email address will not be published. Required fields are marked *