Nature News

Influenza A virus RNA polymerase constructions assist to raised perceive the replication of the viral genome


Taubenberger, J.Okay. & Kash, J.C. Evolution of the influenza virus, host adaptation and pandemic formation. Cell Host Microbe 7, 440-451 (2010).


Mostafa, A., Abdelwhab, E.M., Mettenleiter, T.C. and Pleschka, S. Zoonotic potential of influenza A viruses: a complete overview. Viruses 10, 497 (2018).


Pflug, A., Lukarska, M., Resa-Infante, P., Reich, S. and Cusack, S. Structural overview of RNA synthesis by the transcription-replication machine of the influenza virus. Virus Res. 234, 103-117 (2017).


te Velthuis, A.J. & Fodor, E. Influenza RNA polymerase virus: overview of the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14, 479-493 (2016).


Walker, A. P. & Fodor, E. Interplay between the influenza virus and the RNA polymerase II transcription equipment of the host. Microbiol Tendencies. 27, 398-407 (2019).


Pflug, A., Guilligay, D., Reich, S. and Cusack, S. Construction of the influenza A polymerase sure to the viral RNA promoter. Nature 516, 355-360 (2014).


Jorba, N., Coloma, R. and Ortín, J. Genetic trans-complementation establishes a brand new mannequin for the transcription and replication of influenza virus RNA. PLoS Pathog. 5, e1000462 (2009).


York, A., Hengrung, N., Vreede, F.T., Huiskonen, J.T. and Fodor, E. Isolation and characterization of the constructive replicative intermediate of a negative-stranded RNA virus. Proc. Natl Acad. Sci. USA 110, E4238 to E4245 (2013).


Jorba, N., Space, E. & Ortín, J. Oligomerization of the influenza virus polymerase advanced in vivo. J. Gen. Virol. 89, 520-524 (2008).


Moeller, A., Kirchdoerfer, R.N., Potter, C.S., Carragher, B. & Wilson, I. A. Group of the Replication Mechanism of the Influenza Virus. Science 338, 1631-1634 (2012).


Chang, S. et al. Cryo-EM construction of the influenza virus RNA polymerase advanced at a decision of four.three Å. Mol. Cell 57, 925-935 (2015).


Hara, Okay., Schmidt, F., Crow, M. & Brownlee, GG Amino acid residues within the N-terminal area of the PA subunit of influenza A RNA polymerase play a necessary position in protein stability, endonuclease exercise, cap binding, and binding of the virion RNA promoter. J. Virol. 80, 7789-7798 (2006).


Mänz, B., Brunotte, L., Reuther, P. and Schwemmle, M. Adaptive mutations of NEP compensate for faulty replication of H5N1 RNA in human cells in tradition. Nat. Frequent. three, 802 (2012).


Deng, T., Vreede, FT and Brownlee, GG Completely different de novo initiation methods are utilized by the RNA polymerase of the influenza virus on its promoters of cRNA and viral RNA throughout the replication of viral RNA. J. Virol. 80, 2337-2348 (2006).


Hengrung, N. et al. Crystal construction of the RNA influenza virus-dependent RNA polymerase C. Nature 527, 114-117 (2015).


Thierry, E. et al. The influenza polymerase could undertake another configuration involving a radical repackaging of the PB2 domains. Mol. Cell 61, 125-137 (2016).


Serna Martin, I. et al. A mechanism for the activation of the transcriptase of the influenza virus. Mol. Cell 70, 1101-1110 (2018).


Reich, S. et al. Structural overview of cap seize and RNA synthesis by influenza polymerase. Nature 516, 361-366 (2014).


Gerlach, P., Malet, H., Cusack S. and Reguera, J .: Structural overview of the replication of the Bunyavirus virus and its regulation by the promoter of the vRNA. Cell 161, 1267-1279 (2015).


Oymans, J. & Te Velthuis, A.J. W. A mechanism for priming and realignment throughout the replication of A. influenza virus Virol. 92, e01773-17 (2018).


Velthuis, A.J., Robb, N.C., Kapanidis, A.N. & Fodor, E. The position of the priming loop within the synthesis of A. influenza virus NA. Microbiol. 1, 16029 (2016).


Killip, M.J., Fodor, E. and Randall, R. E. Activation by influenza virus of the interferon system. Virus Res. 209, 11-22 (2015).


te Velthuis, A. J.W. et al. Viral mini-RNAs act as innate immune agonists throughout an an infection with the influenza virus. Nat. Microbiol. three, 1234-1242 (2018).


Bieniossek, C., T. Imasaki, Takagi, Y. and Berger, I. MultiBac: Extension of the analysis toolkit for multiprotein complexes. Biochem Tendencies. Sci. 37, 49-57 (2012).


Weissmann, F. et al. BiGBac permits the fast meeting of genes for the expression of enormous multi-subunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564 to E2569 (2016).


Sorry, E. et al. A basic protocol for the technology of nanobodies for structural biology. Nat. Protocols 9, 674 to 693 (2014).


Walter, T. S. et al. A process for the implementation of crystallization experiments in nanolitre at excessive pace. Crystallization workflow for preliminary screening, automated storage, imaging and optimization. Acta Crystallogr. D 61, 651-657 (2005).


Kabsch, W. Xds. Acta Crystallogr. D 66, 125-132 (2010).


Tickle, I.J. et al. STARANISO. (2018).


McCoy, A.J. et al. Phaser crystallographic software program. J. Appl. Cristallogr. 40, 658-674 (2007).


Adams, P.D. et al. PHENIX: an entire system based mostly on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).


Emsley, P. & Cowtan, Okay. Coot: Modeling instruments for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).


Sensible, O.S. et al. Exploitation of construction similarity in refinement: Automated restrictions of the NCS and the goal construction in BUSTER. Acta Crystallogr. D 68, 368-380 (2012).


Rasmussen, S.G. et al. Crystalline construction of the β2 receptor adrenergic receptor advanced – Gs. Nature 477, 549-555 (2011).


Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).


Zhang, Okay. Gctf: Actual-time willpower and correction by the FCT. J. Struct. Biol. 193, 1-12 (2016).


Scheres, S. H. RELION: Implementation of a Bayesian method to the willpower of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).


Punjani, A., Rubinstein, J.L., Fleet, D.J. and Brubaker, M.AcryoSPARC: algorithms for the fast willpower of unsupervised cryo-EM construction. Nat. Strategies 14, 290-296 (2017).


Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605-1612 (2004).


Emsley, P., Lohkamp, ​​B., Scott, W. G. and Cowtan, Okay. Traits and improvement of Coot. Acta Crystallogr. D 66, 486-501 (2010).


Davis, I. W. et al. MolProbity: contacts any atom and validation of the construction of proteins and nucleic acids. Nucleic Acids Res. 35, W375 to W383 (2007).


Shkumatov, A. V. & Strelkov, S. V. DATASW, an HPLC-SAXS knowledge evaluation software. Acta Crystallogr. D 71, 1347-1350 (2015).


Deng, T., Sharps, J., Fodor, E., and GG. In vitro meeting of PB2 with a dimer of PB1-PA helps a brand new mannequin of subunit meeting of virus polymerase. of influenza A right into a purposeful trimer advanced. J. Virol. 79, 8669-8664 (2005).


Fodor, E. et al. A single amino acid mutation within the PA subunit of influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989-9001 (2002).


Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679-9682 (1999).


Fodor, E. & Smith, M. The PA subunit is required for environment friendly nuclear accumulation of the PB1 subunit of the A. Virol virus RNA polymerase advanced. 78, 9144-9153 (2004).


Vreede, F.T., Jung, T.E. and Brownlee, G.G. Mannequin suggesting that influenza virus replication is regulated by stabilization of replication intermediates. J. Virol. 78, 9568-9572 (2004).


Nilsson-Payant, B.E., Sharps, J., Hengrung, N. and Fodor, E. The PA51-72-exposed loop of influenza A virus polymerase uncovered on the floor is required for replication of the viral genome. J. Virol. 92, e00687-18 (2018).


Schneider, C.A., Rasband, W.S. & Eliceiri, Okay.W.NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671 to 675 (2012).


Robb, N.C., Smith, M., Vreede, F.T. and Fodor, E. The NS2 / NEP protein regulates the transcription and replication of the influenza virus's RNA genome. J. Gen. Virol. 90, 1398-1407 (2009).


Reich, S., Guilligay, D. & Cusack, S. Fluorescence-based in vitro research of the initiation of RNA synthesis by influenza polymerase B. Nucleic Acids Res. 45, 3353-3368 (2017).


Bussey, Okay.A. et al. AP residues within the pandemic influenza H1N1 virus of 2009 reinforce the exercise of avian influenza virus polymerase in mammalian cells. J. Virol. 85, 7020-7028 (2011).


Hu, J. et al. PA-induced deadly unfold and an extreme innate immune response contribute to the excessive virulence of the H5N1 avian influenza virus in mice. J. Virol. 87, 2660-2672 (2013).


Ilyushina, N.A. et al. Adaptation of the pandemic H1N1 influenza virus in mice. J. Virol. 84, 8607-Eight.616 (2010).


Kamiki, H. et al. A PB1-Okay577E mutation of the H9N2 influenza virus will increase the exercise and pathogenicity of the polymerase in mice. Viruses 10, 653 (2018).


Lee, C. Y. et al. New mutations in avian AP, related to an adaptive mutation of PR8 NP, exacerbate the virulence of recombinant PR8-derived influenza A viruses in mice. Veterinary. Microbiol. 221, 114-121 (2018).


Liedmann, S. et al. The brand new determinants of virulence assist to strengthen the immune response and scale back the virulence of a variant influenza A virus A / PR8 / 34. J. Infect. Dis. 209, 532-541 (2014).


Mehle, A., Dugan, V.G., Taubenberger, J.Okay. and Doudna, J. A. The reassortment and mutation of the PA subunit of the avian influenza virus polymerase overcame inter-species obstacles. J. Virol. 86, 1750-1757 (2012).


Neumann, G., Macken, C., A. and Kawaoka, Y. Identification of Amino Acid Modifications That Might Be Essential for the Genesis of Influenza A (H7N9) Viruses. J. Virol. 88, 4877-4896 (2014).


Peng, X. et al. The amino acid substitutions HA A150V, PA A343T and PB2 E627Okay improve the virulence of the H5N6 influenza virus in mice. Entrance. Microbiol. 9, 453 (2018).


Slaine, P.D. et al. Adaptive mutations of influenza A / California / 07/2009 improve the exercise of the polymerase and the manufacturing of infectious virions. Viruses 10, 272 (2018).


Wu, R. et al. A number of amino acid substitutions are concerned within the adaptation of the H9N2 avian influenza virus to mice. Veterinary. Microbiol. 138, 85-91 (2009).


Xu, G. et al. The predominant Okay356R mutation of AP within the H9N2 avian influenza virus will increase the replication and pathogenicity of mammals. J. Virol. 90, 8105-8114 (2016).


Yamaji, R. et al. Adaptive Mutations in Mammals of Extremely Pathogenic Avian Influenza Virus H5N1 PA Protein. J. Virol. 89, 4117-4125 (2015).


Zhang, Z. et al. A number of amino acid substitutions concerned in enhancing the pathogenicity of LPAI H9N2 in mice. Infect. Broom. Evol. 11, 1790-1797 (2011).


Zhong, G. et al. Mutations within the PA protein of H5N1 avian influenza viruses have an effect on the exercise of the polymerase and the virulence of the mouse. J. Virol. 92, e01557-17 (2018).


Tan, Y. Z. et al. Bearing in mind the popular orientation of the pattern in single-particle cryo-EM by inclination. Nat. Strategies 14, 793-796 (2017).


Naydenova, Okay. and Russo, C. J. Measure the consequences of particle orientation to enhance the effectivity of digital cryomicroscopy. Nat. Frequent. Eight, 629 (2017).

Leave a Reply

Your email address will not be published. Required fields are marked *