Nature News

Multiplication of fires threatens historic carbon sinks in boreal forest soils

1.

Bond-Lamberty, B., Peckham, S.D., Ahl, D.E. and Gower, S.T. Fireplace is the first driver of the carbon steadiness within the boreal forest of central Canada. Nature 450, 89-92 (2007).

2

Walker, X.J. et al. Cross-sectional controls of carbon emissions from mega-mines within the boreal forest. Glob. Change Biol. 24, 4251-4265 (2018).

three

Amiro, B.D. et al. Direct carbon emissions from forest fires in Canada, 1959-1999. Can. J. For. Res. 31, 512-525 (2001).

four

Chapin, F. S. et al. Reconcile the ideas, terminology and strategies of the carbon cycle. Ecosystems 9, 1041-1050 (2006).

5

Kasischke, E.S. & Turetsky, M. R. Current adjustments in fireplace regimes within the North American boreal area: spatial and temporal combustion patterns in Canada and Alaska. Geophysics Res. Lett. 33, 09703 (2006).

6

Balshi, M.S. et al. Analysis of the response of burned areas to local weather change in western boreal America utilizing a multivariate adaptive regression (MARS) flute strategy. Glob. Change Biol. 15, 578-600 (2009).

7.

de Groot, W.J., Flannigan, M.D. and Cantin, A.S. Local weather change has implications for future boreal fireplace regimes. For. College. Handle. 294, 35-44 (2013).

eight

Li, F., Lawrence, DM and Bond-Lamberty, B. Affect of fires on temperature and vitality steadiness of air on the floor of the planet's floor for the 20 th century as a result of adjustments inside ecosystems. About. Res. Lett. 12, 044014 (2017); corrigendum 12, 069501 (2017).

9

Johnstone, J. F. et al. Fireplace, local weather change and forest resilience within the inside of Alaska. Can. J. For. Res. 40, 1302-1312 (2010).

ten.

Kelly, R. et al. The current boreal forest fires exceed the bounds of the hearth regime of the final 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055-13060 (2013).

11

Johnson, E. A. Dynamics of Fireplace and Vegetation (Cambridge Univ Press, 1992).

12

Little, D., Farrell, E. and Collins, J. Inheritance of land use and soil improvement in semi-natural ecosystems within the marginal highlands of Eire. Catena 30, 83-98 (1997).

13

Rogers, B.M., Soy, A.J., Goulden, M.L. and Randerson, J.T. Affect of forest species on continental variations in boreal fireplace and local weather suggestions. Nat. Geosci. eight, 228-234 (2015).

14

Turetsky, M.R. et al. Current acceleration of biomass burning and carbon losses in Alaska's forests and peatlands. Nat. Geosci. four, 27-31 (2011).

15

Boby, L.A., Schuur, E.A., Mack, M.C., Verbyla, D. and Johnstone, J.F. Quantify the severity of fires, carbon and nitrogen emissions within the boreal forest of Alaska. College. Appl. 20, 1633-1647 (2010).

16

Lorenz, Ok. and Lal, R. in "Carbon sequestration in forest ecosystems" (eds Lorenz, Ok. and Lal, R.) 159-205 (Springer, 2010).

17

Harden, J.W. et al. The function of fireplace within the boreal carbon steadiness. Glob. Change Biol. 6, 174-184 (2000).

18

Hoy, E.E., Turetsky, M.R. & Kasischke, E.S. Extra frequent fires improve the vulnerability of boreal black spruce forests in Alaska. About. Res. Lett. 11, 095001 (2016).

19

Walker, X.J. et al. Combustion of soil natural layer in boreal black spruce and jack pine stands of the Northwest Territories, Canada. Int. J. Wildland Fireplace 27, 125-134 (2018).

20

Johnstone, J.F., Hollingsworth, T.N. and Chapin, F. S. A key to predicting successional trajectories after a hearth in black spruce stands within the inside of Alaska. Basic Technical Report PNW-GTR-767 (US Division of Agriculture, 2008).

21

Mack, M.C. et al. Carbon loss brought on by an unprecedented forest fireplace within the Arctic tundra. Nature 475, 489-492 (2011).

22

Levin, I. & Hesshaimer, V. Radiocarbon – a singular tracer of the dynamics of the worldwide carbon cycle. Radiocarbon 42, 69-80 (2000).

23

Hayes, D.J. et al. Is the terrestrial CO2 sink north of excessive latitudes weakening? Glob. Biogéochem. Cycles 25, GB3018 (2011).

24

van der Werf, G.R. et al. Estimated world emissions from fires from 1997 to 2016. Land Syst. Sci. Information 9, 697 to 720 (2017).

25

Pellegrini, A. F. A. et al. The frequency of fires leads to decadal adjustments in carbon and nitrogen within the soil and within the productiveness of ecosystems. Nature 553, 194-198 (2018).

26

Schuur, E.A.G. et al. Local weather change and carbon return in permafrost. Nature 520, 171-179 (2015).

27

Minayeva, T. Yu et al. Carbon accumulation in soils of forest and peat ecosystems south of Valdai in the course of the Holocene. Biol. Taurus. 35, 524-532 (2008).

28

Younger, A.M., Higuera, P.E., Duffy, P.A. and Hu, F.S. Climatic thresholds decide the hearth regime in excessive latitude areas and suggest vulnerability to future local weather change. Écographie 40, 606-617 (2017).

29

Yue, X. et al. Affect of 2050 local weather change on forest fires in North America: implications for air high quality in ozone. Atmos. Chem. Phys. 15, 10033-10055 (2015).

30

Prepare dinner, E. R. & Kairiukstis, L. Strategies of dendrochronology: functions to environmental science (Springer Science and Enterprise Media, 1990).

31.

Trumbore, S.E. and Harden, J.W. Accumulation and Carbon Renewal in Natural and Mineral Soils of the Nordic Research Space of ​​BOREAS. J. Geophys. Res. Atmos. 102, 28817-28830 (1997).

32

Melvin, A. M. et al. Variations within the distribution of carbon in ecosystems and the nutrient cycle associated to the composition of tree species in a boreal forest in the midst of the succession. Ecosystems 18, 1472-1488 (2015).

33

Trumbore, S.E. et al. in Radiocarbon and local weather change: mechanisms, functions and laboratory methods (eds Schuur, E.A.G. et al.) 279-315 (Springer, 2016).

34

Vogel, J.S., Southon, J.R. and Nelson, D.E. Catalyst and binder results when utilizing filamentous graphite for AMS. Nucl. Instrum. Phys. Strategies Res. B 29, 50-56 (1987).

35

Schuur, E.A. G., Druffel, E.R. and Trumbore, S. E. Radiocarbon and local weather change: mechanisms, functions and laboratory methods (Springer, 2016).

36

de Groot, W.J. et al. Estimation of direct carbon emissions from forest fires in Canada. Int. J. Wildland Fireplace 16, 593-606 (2007).

37

Fraser, R.H., Li, Z. & Cihlar, J. Neuralgic Level Distinction Synergy and NDVI (HANDS): A brand new approach for mapping burned areas within the boreal forest. Distant Sens. About. 74, 362-376 (2000).

38

Burton, P.J., Parisien, M.-A., Hicke, J.A., Corridor, R.J. and Freeburn, J.T. Giant fires are brokers of ecological variety within the North American boreal forest. Int. J. Wildland Fireplace 17, 754-767 (2008).

39

Parisien, M.-A. et al. Spatial distribution of forest fires in Canada, 1980-1999. Int. J. Wildland Fireplace 15, 361-374 (2006).

40

Shares, B.J. et al. Giant Forest Fires in Canada, 1959-1997. J. Geophys. Res. 107, 8149 (2002).

41

Walker, X.J. et al. ABOVE: Forest Fireplace Carbon Emissions and Plot Traits, NWT, California, 2014-2016. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1561 (2018).

42

R core group of improvement. R: a language and an atmosphere for statistical computing (2018).

43

Heinze, G., Ploner, M., Dunkler, D., and Southworth, H. logistf: Firth-reduced logistic regression (2016).

44

Heinze, G. & Schemper, M. An answer to the issue of separation in logistic regression. Stat. Med. 21, 2409-249 (2002).

45

Burnham, Ok. P. & Anderson, D. R. Mannequin choice and multi-model inference: a theoretical strategy to theoretical data (Springer Science and Enterprise Media, 2003).

46

Burnham, Ok.P., Anderson, D.R. & Huyvaert, Ok.P. Number of AIC fashions and multimodel inference in behavioral ecology: context, observations, and comparisons. Conduct Ecol. Sociobiol. 65, 23-35 (2011).

47

Hosmer, D.W., Lemeshow, S. and Sturdivant, R. X. Utilized Logistic Regression (John Wiley & Sons, 2013).

48.

Walker, X.J. et al. ABOVE: Characterization of Carbon Dynamics in Burned Forest Plots, NWT, Canada, 2014. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1664 (2019).

Leave a Reply

Your email address will not be published. Required fields are marked *