Nature News

Quantification of inactive lithium in lithium metallic cells

1.

Tarascon, J. M. and Armand, M. Issues and Challenges of Rechargeable Lithium Batteries. Nature 414, 359-367 (2001).

2

Lin, D., Liu, Y. and Cui, Y. Revive the lithium metallic anode for prime power batteries. Nat. Nanotechnol. 12, 194-206 (2017).

three

Xu, W. et al. Lithium metallic anodes for rechargeable batteries. Vitality Environ. Sci. 7, 513-537 (2014).

four

Yoshimatsu, I., Hirai, T. & Yamaki, J. Morphology of lithium electrodes throughout cycle in lithium cells. J. Electrochem. Soc. 135, 2422-2427 (1979).

5

Lu, D. et al. Failure mechanism for quick cost lithium metallic batteries with liquid electrolytes. Adv. Vitality Mater. 5, 1400993 (2015).

6

Wooden, Okay. N., Noked, M. and Dasgupta, N. P. Lithium Steel Anodes: In direction of a Higher Understanding of Coupled Morphological, Electrochemical and Mechanical Habits. ACS Vitality Lett. 2, 664 to 672 (2017).

7.

Bai, P., Li, J., Brushett, F.R. and Bazant, M.Z. Transition of lithium progress mechanisms in liquid electrolytes. Vitality Environ. Sci. 9, 3221-3229 (2016).

eight

Mehdi, B.L. et al. Statement and quantification of nanoscale processes in lithium batteries by electrochemical operando (S) TEM. Nano Lett. 15, 2168-2173 (2015).

9

Harry, Okay.J., Hallinan, D.T., Parkinson, D.Y., Macdowell, A.A. and Balsara, N.P. Detection of underground buildings beneath dendrites fashioned on cycled lithium metallic electrodes. Nat. Mater. 13, 69-73 (2013).

ten.

Chandrashekar, S. et al. The Li Li 7Li battery reveals the placement of microstructural lithium. Nat. Mater. 11, 311-315 (2012).

11

Bhattacharyya, R. et al. In situ NMR statement of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504-510 (2010).

12

Xu, C. et al. Formation of the interface layer in strong polymer electrolyte lithium batteries: XPS research. J. Mater. Chem. A 2, 7256-7264 (2014).

13

Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electronic microscopy. Science 358, 506-510 (2017).

14

Wang, X. et al. New data on the construction of electrochemically deposited lithium metallic and its strong electrolyte interphases through cryogenic TEM. Nano Lett. 17, 7606-7612 (2017).

15

Cheng, X.B. et al. Examination of strong electrolytic interphases on a lithium metallic anode. Adv. Sci. three, 1-20 (2015).

16

Zheng, J., Lochala, J.A., Kwok, A., Deng, Z.D. and Xiao, J. Analysis is progressing within the understanding of distinctive interfaces between concentrated electrolytes and electrodes for power storage functions. Adv. Sci. four, 1700032 (2017).

17

Li, S. et al. Develop excessive efficiency lithium metallic anodes in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018).

18

Steiger, J., Kramer, D. and Mönig, R. Microscopic observations of lithium foam formation, progress and shrinkage throughout electroplating and dissolution. Electrochim. Acta 136, 529-536 (2014).

19

Chen, Okay.-H. et al. Useless lithium: Results of mass transport on the voltage, capability and failure of lithium metallic anodes. J. Mater. Chem. A 5, 11671-11681 (2017).

20

Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A. and Kourkoutis, L. F. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345-349 (2018).

21

Aurbach, D. & Weissman, I. On the opportunity of LiH formation on Li surfaces in moist electrolyte options. Electrochim. Frequent. 1, 324-331 (1999).

22

Hu, Y. Y. et al. Origin of further capacities in lithium-ion metallic oxide battery electrodes. Nat. Mater. 12, 1130-1136 (2013).

23

Alvarado, J. et al. Bisalt Ether Electrolytes: approach to lithium metallic batteries with Ni-rich cathodes. Vitality Environ. Sci. 12, 780-794 (2019).

24

Adams, B., D., Zheng, J., Ren, X, Xu, W. and Zhang, J. G. Correct Willpower of Coulombic Effectivity for Lithium Steel Anodes and Lithium Steel Batteries. Adv. Vitality Mater. eight, 1702097 (2017).

25

Lu, J., Wu, T. and Amine, Okay. Superior Characterization Strategies for Superior Lithium-ion Batteries. Nat. Vitality 2, 17011 (2017).

26

Lee, H. et al. Suppression of progress of lithium dendrite by metallic coating on a separator. Adv. Funct. Mater. 27, 1704391 (2017).

27

Zheng, J. et al. Very steady operation of lithium metallic batteries enabled by the formation of a excessive focus transient electrolyte layer. Adv. Vitality Mater. 6, 1-10 (2016).

28

Saint, J., Morcrette, M., Larcher, D. and Tarascon, J. M .. Stable State Ion. 176, 189-197 (2005).

29

Yin, X. et al. Overview of the morphological evolution and cyclic habits of the lithium metallic anode beneath mechanical stress. Nano Vitality 50, 659-664 (2018).

30

Lee, H. et al. Electrode edge results and failure mechanism of lithium-metal batteries. ChemSusChem 11, 3821-3828 (2018).

31.

Wooden, S. M. et al. Predict calendar getting older in lithium metallic secondary batteries: composition impacts and interphase stability to strong electrolyte. Adv. Vitality Mater. eight, 1-6 (2018).

32

Drenik, A. et al. Analysis of plasma hydrogen isotope content material by residual fuel evaluation with JET and AUG. Phys. Scr. T170, 014021 (2017).

33

Xu, Okay. Non-aqueous liquid electrolytes for rechargeable lithium batteries. Chem. Rev. 104, 4303-4418 (2004).

Leave a Reply

Your email address will not be published. Required fields are marked *