Nature News

Pairing of electrons within the state of pseudogap revealed by the discharge noise within the copper oxide junctions

1.

Keimer, B., Kivelson, S.A., Norman R.M., Uchida, S. & Zaanen, J. From quantum matter to excessive temperature superconductivity in copper oxides. Nature 518, 179-186 (2015).

2

Emery, V.J. and Kivelson, S. A. Significance of part fluctuations in superconductors with low superfluid density. Nature 374, 434-437 (1995).

three

Lee, P., Nagaosa, N. and Wen, X.G. Doping of a Mott insulator: Physics of superconductivity at excessive temperature. Rev. Mod. Phys. 78, 17-85 (2006).

four

Uchida, S.-i. Avant-garde within the elucidation of the mechanism of superconductivity at excessive temperature. Jpn. J. Appl. Phys. 51, 010002 (2012).

5

Cuevas, J. C. & Fogelström, M. Projection noise and a number of Andreev reflections in dc superconductors. Phys. Rev. Lett. 89, 227003 (2002).

6

Dieleman, P., Bukkems, H.G., Klapwijk, T.M., Schicke, M. & Gundlach, Ok.H. Remark of Andreev reflection enhanced with firing sound. Phys. Rev. Lett. 79, 3486-3489 (1997).

7.

Ronen, Y. et al. Cost of a quasi-particle in a superconductor. Proc. Natl Acad. Sci. USA 113, 1743-1748 (2016).

eight

Loeser, A.G. et al. House of excitation within the regular state of Bi2Sr2CaCu2O8 + δ underdoped. Science 273, 325-329 (1996).

9

Ding, H. et al. Spectroscopic highlighting of a pseudogap within the regular state of excessive T, under-doped
c superconductors. Nature 382, ​​51-54 (1996).

ten.

Kondo, T. et al. Unravel the formation of Cooper pairs above the transition temperature because the pseudogap state within the cuprates. Nat. Phys. 7, 21-25 (2011).

11

Reber, T.J. et al. The preparation and the house of "filling" within the cuprates from the density of tomographic states. Phys. Rev. B 87, 060506 (2013).

12

Gomes, Ok. Ok. et al. Visualize the formation of pairs on the atomic scale within the high-T
c superconductor Bi2Sr2CaCu2O8 + δ. Nature 447, 569-572 (2007).

13

Kohsaka, Y. et al. Visualization of the emergence of the pseudogap state and evolution to superconductivity in a calmly doped Mott insulator. Nat. Phys. eight, 534-538 (2012).

14

Lee, J. et al. Spectroscopic footprint of the incoherent part superconductivity within the pseudogap state of cuprate. Science 325, 1099-1103 (2009).

15

Bilbro, L. S. et al. Temporal correlations of superconductivity above transition temperature in La2-xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298-302 (2011).

16

Wang, Y., Li, L. and Ong, impact N. Nernst on the T-highs
c superconductors. Phys. Rev. B 73, 024510 (2006).

17

Li, L. et al. Diamagnetism and coupling of Cooper superior to T
c within the cuprates. Phys. Rev. B 81, 054510 (2010).

18

Božović, I., He, X., Wu, J. & Bollinger, A. T. Important temperature dependence in overdoped copper oxides on a superfluid density. Nature 536, 309-311 (2016).

19

Picciotto, R. et al. Direct commentary of a fractional cost. Nature 389, 162-164 (1997).

20

Saminadayar, L., D. Glatti, Y. Jin, and Etienne, B. Remark of the Partially Loaded Laughlin Particle e / three. Phys. Rev. Lett. 79, 2526-2529 (1997).

21

Negri, O., Zaberchik, M., Drachuck, G., Keren, A. and Reznikov, M. Zero-energy states at a metal-metal / cuprate-superconductor interface probed by shock. Phys. Rev. B 97, 214504 (2018).

22

Bastiaans, Ok.M. et al. Cost entrapment and super-fish noise facilities in a cuprate superconductor. Nat. Phys. 14, 1183-1187 (2018).

23

Berg, E., Fradkin, E., Kivelson, S. A. and Tranquada, J. M. Superconductors: How spin, cost and superconducting orders mingle in cuprates. New J. Phys. 11, 115004 (2009).

24

Lee, P. A. Amperean pairing and pseudogap part of superconductors in cuprate. Phys. Rev. X four, 031017 (2014).

25

Hamidian, M.H. et al. Detection of a Cooper pair density wave in Bi2Sr2CaCu2O8 + x. Nature 532, 343-347 (2016).

26

Božović, I., Logvenov, G., Verhoeven, M., Caputo, P. and Goldobin, E. No mixing of superconductivity and antiferromagnetism in a excessive temperature superconductor. Nature 422, 873-875 (2003).

27

Deutscher, G. Coherence and excitations of single particles in excessive temperature superconductors. Nature 397, 410-412 (1999).

28

Andersen, O.Ok., Liechtenstein, A.I., Jepsen, O. & Paulsen, F.LDA, vitality bands, low-energy Hamiltonians, t, "t
(ok) and J
. J. Phys. Chem. Solids 56, 1573-1591 (1995).

29

Sato, Y. et al. Thermodynamic proof of a nematic part transition in the beginning of the pseudogap in YBa2Cu3Oy. Nat. Phys. 13, 1074-1078 (2017).

30

Wu, J., Bollinger, A.T., He, X. & Božović, I. Spontaneous rupture of rotational symmetry in copper oxide superconductors. Nature 547, 432-435 (2017).

31.

Božović, I. Engineering of the atomic layer of superconducting oxides: yesterday, at present, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686-2695 (2001).

32

Gozar, A. et al. Superconductivity of excessive temperature interface between metallic and insulating copper oxides. Nature 455, 782-785 (2008).

33

Smadici, S. et al. Superconducting transition at 38 Ok in La2CuO4 – La1.64Sr0.36CuO4 superconducting superconducting networks: highlighting the digital redistribution of the interface by resonant X-ray scattering. Phys. Rev. Lett. 102, 107004 (2009).

34

Logvenov, G., Gozar, A. and Božović, I. Superconductivity at excessive temperature in a single copper-oxygen aircraft. Science 326, 699-702 (2009).

35

Bollinger, A. T. et al. Superconductive-insulator transition in La2-xSrxCuO4 on the quantum resistance of the pair. Nature 472, 458-460 (2011).

36

Yacoby, Y., Zhou, H., Pindak, R. and Božović, I. Atomic layer synthesis and imaging reveal damaged reversal symmetry in La2-xSrxCuO4 movies. Phys. Rev. B 87, 014108 (2013).

37

Božović, I. et al. Big proximity impact in cuprate superconductors. Phys. Rev. Lett. 93, 157002 (2004).

38

Tewari, S. et al. Quick and correct measurement of firing noise on atomic-size junctions within the MHz regime. Rev. Sci. Instrum. 88, 093903 (2017).

39

Rousseeuw, P.J. & Leroy, A.M. Strong regression and detection of outliers. (Wiley, 2005).

40

Cron, R., Goffman, M.F., Esteve, D. and Urbina, C. Multi-charge quantum noise in superconducting atomic contacts. Phys. Rev. Lett. 86, 4104-4107 (2001).

41

Chakravarty, S., Sudbø A., Anderson, P. W. & Robust, S. Tunneling between layers and slot anisotropy in excessive temperature superconductors. Science 261, 337-340 (1993).

42

Greibe, T., T. Bauch, C., Wilson, and P., Improved chip design to scale back resonances within the Josephson junctions subspacing scheme. J. Phys. Conf. Ser. 150, 052063 (2009).

43

Greibe, T. et al. Are "pinholes" the reason for extra present in superconducting tunnel junctions? A research of the Andreev present in extremely resistive junctions. Phys. Rev. Lett. 106, 097001 (2011).

44

Uzawa, Y. and Wang, Z. Coherent A number of Cost Switch in a Superconducting NbN Tunnel Junction. Phys. Rev. Lett. 95, 017002 (2005).

Leave a Reply

Your email address will not be published. Required fields are marked *