Nature News

Microbiota-derived lantibiotics restores resistance to vancomycin-resistant viruses enterococcus


Lebreton, F. et al. Tracing Enterococci of Paleozoic Origin to the Hospital. Cell 169, 849-861 (2017).


Gilmore, M., Clewell, D., Ike, Y., and Shankar, N. Enterococci: Commensals to the Main Causes of Drug-Resistant An infection (Massachusetts Eye and Ear Infirmary, 2014).


Caballero, S. et al. Cooperating commensals restore resistance to vancomycin resistant Enterococcus faecium colonization. Cell Host Microbe 21, 592-602.e594, (2017).


US Division of Well being and Social Companies. Threats associated to antibiotic resistance in the USA, 2013 (2013).


Pamer, E. G. Resurrection of the intestine microbiota to manage antibiotic-resistant pathogens. Science 352, 535-538 (2016).


Kim, S., Covington, A. and Pamer, E. G. The intestine microbiota: antibiotics, resistance to colonization and enteric pathogens. Immunol. Rev. 279, 90-105 (2017).


van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407-415 (2013).


Lawley, T.D. et al. Focused restoration of the intestine microbiota with easy and particular bacteriotherapy solves the relapsing illness of Clostridium difficile in mice. PLoS Pathog. eight, e1002995 (2012).


Buffie, C.G. et al. Precision microbiome reconstitution restores resistance to Clostridium difficile induced by bile acids. Nature 517, 205-208 (2015).


Becattini, S. et al. Commensal microbes present a first-line protection towards Listeria monocytogenes an infection. J. Exp. Med. 214, 1973-1989 (2017).


Suez, J. et al. Submit-antibiotic reconstitution of the mucosal intestinal microbiome is altered by probiotics and enhanced by autologous FMT. Cell 174, 1406-1423 (2018).


Ubeda, C. et al. Vancomycin-resistant enterococci dominates the intestine microbiota by antibiotic remedy in mice and precedes bloodstream invasion in people. J. Clin. Make investments. 120, 4332-4341 (2010).


Taur, Y. et al. Intestinal dominance and danger of bacteremia in sufferers present process allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905-914 (2012).


Ubeda, C. et al. The intestine microbiota containing Barnesiella species cures the colonization of Vancomycin-resistant Enterococcus faecium. Infect. Immun. 81, 965-973 (2013).


Caballero, S. et al. Distinct however overlapping intestinal niches in area for enterococcus faecium immune to vancomycin and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog. 11, e1005132 (2015).


Money, H. L., Whitham, C.V., Behrendt, C.L. and Hooper, L.V. Symbiotic micro organism, direct expression of an intestinal bactericidal lectin. Science 313, 1126-1130 (2006).


Brandl, Okay. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immunodeficiencies. Nature 455, 804-807 (2008).


Chatterjee, C., Paul, M., Xie, L. and van der Donk, W. A. ​​Biosynthesis and mode of motion of lantibiotics. Chem. Rev. 105, 633-684 (2005).


Knerr, P.J. & van der Donk, W.A. Discovery, biosynthesis and engineering of lantipeptides. Annu. Rev. Biochem. 81, 479-505 (2012).


Mattick, A. T. and Hirsch, A. A potent inhibitory substance produced by group N streptococci. Nature 154, 551 (1944).


Delves-Broughton, J., Blackburn P., R., Evans and Hugenholtz, J. Purposes of bacteriocin, nisin. Antonie van Leeuwenhoek 69, 193-202 (1996).


Wiedemann, I. et al. The precise binding of nisin to lipid II, the precursor of peptidoglycan, combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic exercise. J. Biol. Chem. 276, 1772-1779 (2001).


Hatziioanou, D. et al. Discovery of a brand new lantibiotic nisin O from Blautia obeum A2-162, remoted from the human gastrointestinal tract. Microbiology 163, 1292-1305 (2017).


Hsu, S.T. et al. The nisin – lipid II advanced reveals a pyrophosphate cage that gives a mannequin for brand new antibiotics. Nat. Struct. Mol. Biol. 11, 963-967 (2004).


Breukink, E. et al. The C-terminal area of nisin is accountable for the preliminary interplay of nisin with the goal membrane. Biochemistry 36, 6968-6976 (1997).


Dobson, A. et al. Destiny and efficacy of Lactococcus lactis producing lacticin 3147 within the gastrointestinal tract of mammals. FEMS Microbiol. College. 76, 602-614 (2011).


Picard, C. et al. Synthesis article: Bifidobacteria as probiotic brokers – physiological results and medical advantages. Meals. Pharmacol. Ther. 22, 495-512 (2005).


Kang, D.H. & Fung, D.Y. Discount of Escherichia coli O157: H7 by Pediococcus acidilactici stimulated. Lett. Appl. Microbiol. 29, 206-210 (1999).


Taur, Y., Jenq, R.R., Ubeda, C., van den Brink, M. and Pamer, E.G. Function of the intestine microbiota within the outcomes of transplantation. Finest Pract. Res. Clin. Hematol. 28, 155-161 (2015).


Nakatsuji, T. et al. Antimicrobials from commensal human pores and skin micro organism shield towards Staphylococcus aureus and are poor in atopic dermatitis. Sci. Trad. Med. 9, eaah4680 (2017).


Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of the microbiota and the host within the gut. Science 334, 255-258 (2011).


Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. and Lochs, H. Spatial group and composition of mucosal flora in sufferers with inflammatory bowel illness. J. Clin. Microbiol. 43, 3380-3389 (2005).


Shi, Y., Yang, X., Garg, N. and van der Donk, W. A. ​​Antipeptide manufacturing in Escherichia coli. Jam. Chem. Soc. 133, 2338-2341 (2011).


Montalban-Lopez, M., Buivydas, A. and Kuipers, O. P. in Microbiological Protocols for Hydrocarbons and Lipids Springer Protocols Handbooks (McGenity ed., T. et al.) (Springer, 2015).


Caporaso, J.G. et al. Very excessive throughput microbial group evaluation on Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621-1624 (2012).


Edgar, R. C. UPARSE: Extraordinarily correct OTU sequences from microbial amplicon readings. Nat. Strategies 10, 996-998 (2013).


Edgar, R. C. & Flyvbjerg, H. Error filtering, pairwise meeting and error correction for next-generation sequencing reads. Bioinformatics 31, 3476-3482 (2015).


T. Tatusova, S., B., Fedorov, B., O'Neill, Okay. & Tolstoy, I. RefSeq Microbial Genome Database: New Illustration and Annotation Technique. Nucleic Acids Res. 43, 3872 (2015).


Bolger, A.M., Lohse, M. and Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114-2120 (2014).


Wattam, A. R. et al. Meeting, annotation and comparative genomics in PATRIC, the useful resource heart for all-bacterial bioinformatics. Mol. Biol. 1704, 79-101 (2018).


Medema, M.H. et al. antiSMASH: fast identification, annotation and evaluation of secondary metabolite biosynthesis gene teams in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339 to W346 (2011).


de Jong, A., van Hijum, A., Bijlsma, J. J., Kok, J. and Kuipers, O. P. BAGEL: a device for genome extraction of bacteriocin on the Internet. Nucleic Acids Res. 34, W273 to W279 (2006).


Buchfink, B., Xie, C. and Huson, D. H. Speedy and delicate protein alignment with DIAMOND. Nat. Strategies 12, 59 to 60 (2015).


Eddy, S. R. Accelerated search of HMM profiles. PLOS Comput. Biol. 7, e1002195 (2011).

Leave a Reply

Your email address will not be published. Required fields are marked *