Nature News

Identification of a potassium channel delicate to ATP in mitochondria

1.

Ashcroft, F.M., Harrison, D.E. and Ashcroft, S.J. Glucose induces the closure of single potassium channels in remoted pancreatic rat β cells. Nature 312, 446-448 (1984).

2

Ashcroft, F. M. & Rorsman, P. KATP channels and islet hormone secretion: new views and controversies. Nat. Rev Endocrinol. 9, 660-669 (2013).

Three

Nichols, C. G. KATP as molecular sensors of mobile metabolism. Nature 440, 470-476 (2006).

four

Inoue, I., H. Nagase, Okay. Kishi and Higuti, Okay + channel delicate to ATP within the internal membrane of mitochondria. Nature 352, 244-247 (1991).

5

Paucek, P. et al. Partial reconstitution and purification of the glibenclamide dependent AT + dependent P + channel from mitochondria of liver and rat bovine coronary heart. J. Biol. Chem. 267, 26062-26069 (1992).

6

Garlid, Okay.D. & Halestrap, A.P. The mitochondrial KATP chain: actuality or fiction? J. Mol. Cell. Cardiol. 52, 578-583 (2012).

7.

Augustynek, B.B., Kunz, W.S. and Szewczyk, A. in Pharmacology of Mitochondria (Handbook of Experimental Pharmacology, Vol.240) (eds Singh, H. and Sheu, S.S.) 103-127 (Springer, Cham, 2016).

eight

Nessa, A., Rahman, S.A. and Hussain, Okay. Hyperinsulinemic Hypoglycemia – Molecular Mechanisms. Entrance. Endocrinol. (Lausanne) 7, 29 (2016).

9

Garlid, Okay.D. et al. Cardioprotective impact of diazoxide and its interplay with mitochondrial Okay + channels delicate to ATP. Potential mechanism of cardioprotection. Circ. Res. 81, 1072-1082 (1997).

ten.

O'Rourke, B. Proof for mitochondrial Okay + channels and their function in cardioprotection. Circ. Res. 94, 420-432 (2004).

11

Sato, T., Sasaki, N., Seharaseyon, J., O'Rourke, B. and Marbán, E. Selective pharmacological brokers contain mitochondrial however non-sarcolemal KATP channels in ischemic cardioprotection. Circulation 101, 2418-2423 (2000).

12

Wojtovich, A.P. et al. Kir6.2 isn’t the mitochondrial KATP channel, however it’s required for cardioprotection by ischemic preconditioning. A m. J. Physiol. Coronary heart Circ. Physiol. 304, H1439 to H1445 (2013).

13

Szabo, I. & Zoratti, M. Mitochondrial channels: movement of ions and extra. Physiol. Rev. 94, 519-608 (2014).

14

Smith, C. O., Nehrke, Okay. & Brookes, P. S. The Slo (w) pathway to determine the mitochondrial channels answerable for ischemic safety. Biochem. J. 474, 2067-2094 (2017).

15

Calvo, S.E., Clauser, Okay.R. & Mootha, V.Okay.MitoCarta2.zero: An Up to date Stock of Mitochondrial Mammal Proteins. Nucleic Acids Res. 44, D1251 to D1257 (2016).

16

The GTEx consortium. Pilot evaluation of genotype – tissue expression (GTEx): Regulation of multisecular genes in people. Science 348, 648-660 (2015).

17

Dahlem, Y.A. et al. The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp method. Biochim. Biophys. Acta 1656, 46-56 (2004).

18

Bednarczyk, P. et al. Quinine inhibits the potassium channel regulated by ATP mitochondrial bovine coronary heart. J. Membr. Biol. 199, 63-72 (2004).

19

Choma, Okay. et al. Single channel research of the ATP regulated potassium channel in cerebral mitochondria. J. Bioenerg. Biomembr. 41, 323-334 (2009).

20

Cang, C., Aranda Okay., Y.J., Gasnier, B. and Ren, D. TMEM175 is a Okay + organelle channel regulating lysosomal perform. Cell 162, 1101-1112 (2015).

21

Schaedler, T. A. et al. Constructions and capabilities of mitochondrial ABC transporters. Biochem. Soc. Trans. 43, 943-951 (2015).

22

Ardehali, H., Chen, Z., Ko, Y., Mejia-Alvarez, R. and Marbán, E. A multiprotein complicated containing succinate dehydrogenase confers a mitochondrial ATP delicate Okay + channel exercise. Proc. Natl Acad. Sci. USA 101, 11880-11885 (2004).

23

Lee, S.-Y. et al. Mapping the proteome structure of the internal mitochondrial membrane by chemical instruments in residing cells. Jam. Chem. Soc. 139, 3651-3662 (2017).

24

Bernardi, P. Mitochondrial transport of cations: channels, exchangers and permeability transition. Physiol. Rev. 79, 1127-1155 (1999).

25

Liu, X. & Hajnóczky, G. A change in fusion dynamics underlies distinctive morphological modifications in mitochondria throughout hypoxia-reoxygenation stress. Distinction of cell dying. 18, 1561-1572 (2011).

26

Duchen, M.R., Leyssens, A. and Crompton, M. Transient mitochondrial depolarizations replicate the focal launch of sarcoplasmic reticular calcium in single rat cardiomyocytes. J. Cell Biol. 142, 975-988 (1998).

27

Schwarzländer, M. et al. Pulsation of membrane potential in particular person mitochondria: stress-induced mechanism to manage respiratory bioenergetics in Arabidopsis. Plant Cell 24, 1188-1201 (2012).

28

Wang, W. et al. Superoxide flashes in easy mitochondria. Cell 134, 279-290 (2008).

29

Rosselin, M., Santo-Domingo, J., Bermont, F., Giacomello, M. and Demaurex, N. L-OPA1 regulate the biogenesis of mitoflash independently of membrane fusion. EMBO Rep. 18, 451-463 (2017).

30

Leanza, L. et al. Direct pharmacological concentrating on of a mitochondrial ion channel selectively kills tumor cells in vivo. Most cancers Cell 31, 516-531.e10 (2017).

31.

Garlid, Okay.D. & Paucek, P. The cycle of mitochondrial potassium. IUBMB Life 52, 153-158 (2001).

32

Patten, D.A. et al. The OPA1-dependent peak modulation is crucial for mobile adaptation to metabolic demand. EMBO J. 33, 2676-2691 (2014).

33

Costa, A.D. T. and Garlid, Okay.D. Intramitochondrial signaling: interactions between mitoKATP, PKCε, ROS and MPT. A m. J. Physiol. Coronary heart Circ. Physiol. 295, H874 to H882 (2008).

34

Varanita, T. et al. The mitochondrial reworking pathway depending on OPA1 controls atrophic, apoptotic and ischemic tissue harm. Cell Metab. 21, 834-844 (2015).

35

Liu, Y., T. Sato, O'Rourke, B. & Marban, E. ATP-dependent mitochondrial potassic canons: novel effectors of cardioprotection? Circulation 97, 2463-269 (1998).

36

Walters, A.M., Porter, G.A. Jr. and Brookes, P.S. Mitochondria as a drug goal in ischemic coronary heart illness and cardiomyopathy. Circ. Res. 111, 1222-1236 (2012).

37

Foster, D.B. et al. The mitochondrial ROMK channel is a molecular element of mitoKATP. Circ. Res. 111, 446-454 (2012).

38

Ye, J. et al. Primer-BLAST: a device for designing target-specific primers for the polymerase chain response. BMC Bioinformatics 13, 134 (2012).

39

Carraretto, L. et al. A two-pore Okay + channel positioned in a thylakoid controls using photosynthetic gentle in vegetation. Science 342, 114-118 (2013).

40

Teardo, E. et al. Physiological characterization of a plant mitochondrial calcium unortex in vitro and in vivo. Plant Physiol. 173, 1355-1370 (2017).

41

Ashok, Y., Nanekar, R., and Jaakola, V.-P. Outline the thermostability of membrane proteins by Western blotting. Protein Eng. Of. Salt. 28, 539-542 (2015).

42

Hsu, P.D. et al. DNA concentrating on the specificity of RNA guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832 (2013).

43

Sanjana, N.E., Shalem, O. and Zhang, F. Enhanced Vectors and Genome-wide Libraries for CRISPR Screening. Nat. Strategies 11, 783-784 (2014).

44

Frezza, C., Cipolat, S. & Scorrano, L. Isolation of organelles: practical mitochondria from liver fibroblasts, muscle and mouse cultures. Nat. Protocols 2, 287-295 (2007).

45

Schindelin, J. et al. Fiji: an open-source platform for the evaluation of organic photographs. Nat. Strategies 9, 676-682 (2012).

46

Granatiero, V., Boss, M., Tosatto, A., Merli, G. & Rizzuto, R. Utilizing focused variants of aequorin to measure Ca2 + ranges in intracellular organelles. Chilly Harb Spring. Protoc. 2014, 86-93 (2014).

47

Nicholls, D.G. et al. Bioenergetic profile experiment utilizing C2C12 myoblast cells. J. Vis. Exp. Three-7, 2511 (2010).

48.

Carpi, A. et al. The cardioprotective results induced by p66Shc ablation reveal the essential function of mitochondrial ROS formation in ischemia / reperfusion damage. Biochim. Biophys. Acta 1787, 774-780 (2009).

49

Di Lisa, F., Menabò, R., Canton, M., Barile, M. & Bernardi, P. The opening of the mitochondrial permeability transition pore causes the depletion of mitochondrial and cytosolic NAD + and is a causative occasion within the dying of myocytes in post-ischemic reperfusion of the guts. J. Biol. Chem. 276, 2571-2575 (2001).

50

Schlüter, Okay.D., Schwartz, P., Siegmund, B. & Piper, H.M. Prevention of the paradox of oxygen in hypoxic reoxygenated hearts. A m. J. Physiol. 261, H416 to H423 (1991).

Leave a Reply

Your email address will not be published. Required fields are marked *