Nature News

Conformational adjustments induced by pressure in PIEZO1


Coste, B. et al. Piezo1 and Piezo2 are important parts of varied mechanically activated cationic channels. Science 330, 55-60 (2010).


Coste, B. et al. Piezoelectric proteins are mechanically activated channel pore subunits. Nature 483, 176-181 (2012).


Wu, J., Lewis, A.H. and Grandl, J. Contact, voltage and transduction: operate and regulation of piezo ion channels. Biochem Traits. Sci. 42, 57-71 (2017).


Li, J. et al. Piezo1 integration of vascular structure to physiological power. Nature 515, 279-282 (2014).


Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is important for vascular growth in mice. Proc. Natl Acad. Sci. USA 111, 10347-10352 (2014).


Retailleau, Okay. et al. Piezo1 in easy muscle cells is concerned in arterial reworking depending on hypertension. Cell Stories 13, 1161-1171 (2015).


Cahalan, S.M. et al. Piezo1 hyperlinks mechanical forces to the amount of crimson blood cells. eLife four, (2015).


Wang, S. et al. The endothelial cation channel PIEZO1 controls blood strain by facilitating the discharge of ATP-induced circulation. J. Clin. Make investments. 126, 4527-4536 (2016).


Rode, B. et al. Piezo1 channels detect the bodily exercise of the entire physique to revive cardiovascular homeostasis and enhance efficiency. Nat. Widespread. eight, 350 (2017).


Ranade, S. S. et al. Piezo2 is the primary transducer of mechanical forces for tactile sensation in mice. Nature 516, 121-125 (2014).


Woo, S.H. et al. Piezo2 is the primary mechanotransduction channel for proprioception. Nat. Neurosci. 18, 1756-1762 (2015).


Demolombe, S., Duprat, F., Honore, E. and Patel, A. Slower Inactivation of Piezo1 in hereditary dehydrated stomatocytosis (xerocytosis). Biophys. J. 105, 833-834 (2013).


Andolfo, I. et al. New mutations of the Gardos Canal linked to hereditary dehydrated stomatocytosis (xerocytosis). A m. J. Hematol. 90, 921-926 (2015).


Fotiou, E. et al. New mutations in PIEZO1 trigger autosomal recessive generalized lymphatic dysplasia with unimmunized hydrops fetalis. Nat. Widespread. 6, 8085 (2015).


Coste, B. et al. Operate acquire mutations within the mechanically activated ion channel PIEZO2 trigger a subtype of distal arthrogryposis. Proc. Natl Acad. Sci. USA 110, 4667-4672 (2013).


Guo, Y. R. & MacKinnon, R. Construction-based membrane dome mechanism for piezo mechanosensitivity. eLife 6, e33660 (2017).


Saotome, Okay. et al. Mechanically activated ion channel construction Piezo1. Nature 554, 481-486 (2018).


Zhao, Q. et al. Construction and mechanization mechanism of the Piezo canal1. Nature 554, 487-492 (2018).


Wu, J., Goyal, R. and Grandl, J. A localized software of pressure reveals mechanically delicate domains of piezo1. Nat. Widespread. 7, 12939 (2016).


Wang, Y. et al. A lever-shaped transduction pathway for chemistry and long-range mechanocoupling of the mechanosensitive piezoelectric channel. Nat. Widespread. 9, 1300 (2018).


Lewis, A. H. & Grandl, J. The mechanical sensitivity of the Piezo1 ion channels may be adjusted by the voltage of the cell membrane. eLife four, e12088 (2015)


Cox, C.D. et al. The elimination of the mechanoprotective affect of the cytoskeleton reveals that PIEZO1 is triggered by bilayer stress. Nat. Widespread. 7, 10366 (2016).


Árnadóttir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111-137 (2010).


Brohawn, S.G., Su, Z. & MacKinnon, R. Mechanosensitivity is straight associated to the lipid membrane within the TRAAK and TREK1 Okay + channels. Proc. Natl Acad. Sci. USA 111, 3614-3619 (2014).


Brohawn, S.G., Campbell, E.B. and MacKinnon, R. Mechanism of triggering and mechanosensitivity of human TRAAK Okay + channel. Nature 516, 126-130 (2014).


Moe, P. & Blount, P. Analysis of Potential Stimuli for Mechano-Dependent Synchronization of MscL: Results of Stress, Pressure and Lipid Teams. Biochemistry 44, 12239-12244 (2005).


Zhang, W. et al. Ankyrin repetitions transmit pressure to the gate of the NOMPC mechanotransduction channel. Cell 162, 1391-1403 (2015).


Jin, P. et al. Construction of cryo-electron microscopy of the mechanotransduction channel NOMPC. Nature 547, 118-122 (2017).


Gaub, B.M. & Müller, D.J. Mechanical stimulation of Piezo1 receptors relies on the extracellular matrix proteins and the directionality of the pressure. Nano Lett. 17, 2064-2072 (2017).


Hamill, O.P. & McBride, D.W., Jr. Hypo / membrane-induced hyper-mechanosensitivity: a limitation of patch-clamp registration. Annu. Rev. Physiol. 59, 621-631 (1997).


Suchyna, T.M., Markin, V.S. & Sachs, F. Biophysics and construction of patch and gigaseal. Biophys. J. 97, 738-747 (2009).


Moroni, M., Servin-Vences, M.R., Fleischer, R., Sanchez-Carranza, O. and Lewin, G. R. Voltage regulation of mechanically delicate PIEZO channels. Nat. Widespread. 9, 1096 (2018).


Lacroix, J.J., Botello-Smith, W.M. & Luo, Y. Exploration of the set off mechanism of the Piezo1 mechanosensitive channel with the small molecule Yoda1. Nat. Widespread. 9, 2029 (2018).


Ando, ​​T., Uchihashi, T. and Scheuring, S. Filmer biomolecular processes by high-speed atomic pressure microscopy. Chem. Rev. 114, 3120-3188 (2014).


Miyagi, A. & Scheuring, S. Automated pressure controller for amplitude modulated atomic pressure microscopy. Rev. Sci. Instrum. 87, 053705 (2016).


Helfrich, W. Elastic properties of lipid bilayers: concept and potential experiments. Z. Naturforsch. C 28, 693-703 (1973).


Legleiter, J., Park, M., Cusick, B. and Kowalewski, T. Scanning probe acceleration microscopy (SPAM) in fluids: mapping the mechanical properties of surfaces on the nanoscale. Proc. Natl Acad. Sci. USA 103, 4813-4818 (2006).


Kiracofe, D. et al. VEDA: Digital Setting for Dynamic AFM, (2012).


Guzman, H.V., Garcia, P.D. and Garcia, R. Dynamic pressure microscopy simulator (dForce): A instrument for planning and understanding bimodal taping and AFM experiments. Beilstein J. Nanotechnol. 6, 369-379 (2015).


García, R. & San Paulo, A. Schemes of enticing interplay and repellent tip-sample in atomic pressure microscopy in setting mode. Phys. Rev. B 60, 4961-4967 (1999).


Weisstein, E. W. Spherical Cap, of MathWorld – a Wolfram internet useful resource.


Haselwandter, C.A. & MacKinnon, the membrane imprint of R. Piezo and its contribution to mechanosensitivity. eLife 7, e41968 (2018).


Mastronarde, D. N. Automated electron microscopy tomography utilizing strong prediction of pattern actions. J. Struct. Biol. 152, 36-51 (2005).


Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).


Rohou, A. & Grigorieff, N. CTFFIND4: Fast and correct estimation of defocus from digital micrographs. J. Struct. Biol. 192, 216-221 (2015).


Scheres, S. H. RELION: Implementation of a Bayesian strategy to the willpower of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).


Kimanius, D., Forsberg, B.O., Scheres, S.H. and Lindahl, E. Accelerated willpower of the cryo-EM construction with parallelization utilizing GPUs in RELION-2. eLife 5, e18722 (2016).

Leave a Reply

Your email address will not be published. Required fields are marked *