Nature News

Stretchable pumps for comfortable machines


Rus, D. & Tolley, M. T. Design, manufacturing and management of software program robots. Nature 521, 467-475 (2015).


Laschi, C., Mazzolai, B. & Cianchetti, M. Tender Robotics: applied sciences and programs pushing the boundaries of robotic capabilities. Sci. Robotic. 1, eaah3690 (2016).


Amjadi, M., Kyung, Ok.-U., Park, I. & Sitti, M. Scalable, mountable and moveable pressure sensors and their potential purposes: abstract. Adv. Funct. Mater. 26, 1678-1698 (2016).


Hines, L., Ok. Petersen, Lum., G. Z. & Sitti, M. Software program actuators for small-scale robotics. Adv. Mater. 29, 1603483 (2017).


Shintake, J., Cacucciolo, V., Floreano, D. and Shea, H. Tender robotic prehens. Adv. Mater. 30, 1707035 (2018).


Suzumori, Ok., Iikura, S. & Tanaka, H. Growth of a versatile microactuator and its purposes to robotic mechanisms. In Proc. 1991 IEEE Worldwide Conf. Robotics and Automation Vol. 2, 1622-1627 (IEEE, 1991).


Suzumori, Ok., Wada, A. and Wakimoto, S. New cellular strain management system for pneumatic actuators, utilizing reversible chemical reactions of water. Which means. Actuators A 201, 148-153 (2013).


Polygerinos, P. et al. Tender Robotics: Examination of intrinsically versatile units pushed by fluids; manufacturing, detection, management and purposes in human-robot interplay. Adv. Eng. Mater. 19, 1700016 (2017).


Keplinger, C. et al. Clear and extensible ionic wires. Science 341, 984-987 (2013).


Viry, L. et al. Three-axis versatile drive sensor for a comfortable and really delicate synthetic really feel. Adv. Mater. 26, 2659-2664 (2014).


Rosset, S. & Shea, H. R. Small, quick and resistant: built-in elastomer transducers. Appl. Phys. Rev. three, 031105 (2016).


Acome, E. et al. Electrostatic actuators with automated therapeutic, with hydraulic amplification, with muscular efficiency. Science 359, 61-65 (2018).


Dong, L., Agarwal, A.Ok., Beebe, D.J. and Jiang, H. Adaptive liquid microlenses activated by stimulus delicate hydrogels. Nature 442, 551-554 (2006).


Kim, Y. S. et al. Thermo-reactive activation activated by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater.
14, 1002-1007 (2015).


Majidi, C., Kramer, R. and Wooden, R. J. A non-differential elastomeric curvature sensor for softer digital parts than pores and skin. Good Mater. Struct. 20, 105017 (2011).


Cooper, C.B. et al. Extensible torsional, deformation and contact capacitive sensors utilizing double helix liquid metallic fibers. Adv. Funct. Mater. 27, 1605630 (2017).


Pan, C. et al. Visually imperceptible metal-liquid circuits for clear, expandable electronics with direct laser writing. Adv. Mater. 30, 1706937 (2018).


Besse, N., Rosset, S., Zarate, J.J. and Shea, H. Versatile energetic pores and skin: Giant reconfigurable networks of individually addressed form reminiscence polymer actuators. Adv. Mater. Technol. 2, 1700102 (2017).


Ramos, A. Electrokinetics and electrohydrodynamics in microsystems (Springer, 2011).


Iverson, B.D. and Garimella, S.V. Latest advances in small scale pumping applied sciences: overview and analysis. Microfluid. Nanofluidics 5, 145-174 (2008).


Pearson, M. & Seyed-Yagoobi, J. Progress of pumping by electrohydrodynamic conduction. IEEE Trans. Dielectric Electr. Insul. 16, 424-434 (2009).


Darabi, J. & Wang, H. Growth of an electrohydrodynamic injection micro-pump and its potential purposes in pumping fluids in cryogenic cooling programs. J. Microelectromech. Syst. 14, 747-755 (2005).


Chang, S.T., Paunov, V.N., Petsev, D.N. and Velev, O.D.Energy distant self-propelled particles and micropumps primarily based on miniature diodes. Nat. Mater. 6, 235-240 (2007).


Kim, J.W., Suzuki, T., Yokota, S. and Edamura, Ok. Tube micropumps, utilizing electroconjugated fluid (ECF). Which means. Actuators A 174, 155-161 (2012).


Cacucciolo, V., H. Shigemune, M. Cianchetti, C. Laschi and C. Maeda, S. Electrohydrodynamics of conduction with shifting electrodes: a brand new actuation system for unattached robots. Adv. Sci. four, 1600495 (2017).


Wehner, M. et al. Pneumatic energy sources for autonomous and moveable comfortable robotics. Tender robotic. 1, 263-274 (2014).


Rosset, S. & Shea, H. R. Versatile and expandable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281-307 (2013).


Shintake, J., Rosset, S., B. Schubert, D. Floreano, and D. Shea. H. Versatile, self-adhering versatile pliers primarily based on multifunctional polymer actuators. Adv. Mater. 28, 231-238 (2016).


Wehner, M. et al. An built-in design and manufacturing technique for totally comfortable and autonomous robots. Nature 536, 451-455 (2016).


Laser, D.J. and Santiago, J.G. A overview of micropumps. J. Micromech. Microeng. 14, R35 to R64 (2004).


Wang, Y.-N. & Fu, L.-M. Micropumps and biomedical purposes: evaluation. Microélectron. Eng. 195, 121-138 (2018).


Rosset, S., Araromi, O.A., Schlatter, S. & Shea, H.R. A way of producing silicone-based dielectric elastomeric actuators. J. Vis. Exp. 108, 53423 (2016).


Schlatter, S., Illenberger, P. and Rosset, S. Peta-pico-Voltron: an open-source high-voltage energy provide. HardwareX four, e00039 (2018).


Specification MGD 1000S. Accessible at


McMaster-Carr Transportable Single Air Air Compressor Specs. Accessible at:


Olsson, A., Enoksson, P., Stemme, G., and Stemme, E. Valve-free, flat-walled, micro-machined diffuser pumps. J. Microelectromech. Syst. 6, 161-166 (1997).


Jang, L.-S. et al. Stand-alone peristaltic micropump with piezoelectric actuation. Biomed. Microdevices 9, 185-194 (2007).


Lei, Ok. F. et al. Optically clear microfluidic platform primarily based on vortex pump for biotechnological and medical purposes. Proc. Inst. Mech. Eng. H, 221, 129-141 (2007).


Kawun, P., Leahy, S. and Lai, Y. A skinny PDMS nozzle / diffuser micropump for biomedical purposes. Which means. Actuators A 249, 149-154 (2016).


Richter, A., Plettner, A., Hofmann, Ok. A. and Sandmaier, H. Micro-machined electrohydrodynamic pump (EHD). Which means. Actuators A 29, 159-168 (1991).


Ahn, S.-H. & Kim, Y.-Ok. Manufacture and expertise of a flat micro-ion drag pump. Which means. Actuators A 70, 1-5 (1998).


Chen, L., Wang, H., Ma, J., Wang, C. and Guan, Y. Manufacture and characterization of a multi-stage electroosmotic pump for liquid distribution. Which means. Actuators B 104, 117-123 (2005).


Chen, C.-H. & Santiago, J. G. A flat electroosmotic micropump. J. Microelectromech. Syst. 11, 672-683 (2002).


Zengerle, R., Ulrich, J., Kluge, S., Richter, M., and Richter, A. A bidirectional silicon micropump. Which means. Actuators A Phys. 50, 81-86 (1995).


Homsy, A., Linder, V., Lucklum, F. & Rooij, N. F. Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Which means. Actuators B 123, 636-646 (2007).


Ashouri, M., Shafii, M. B. and Moosavi, A. Theoretical and experimental research of a micropump with out magnetic management valve. J. Micromech. Microeng. 27, 015016 (2016).


Tanaka, Y., Noguchi, Y., Yalikun, Y. and Kamamichi, N. Bio-micropump pushed by the muscle of the earthworm. Which means. Actuators B 242, 1186-1192 (2017).


Van de Pol, F.C. M., Van Lintel, H.TG., Elwenspoek, M. & Fluitman, J.H.J. A thermopneumatic micropump primarily based on microengineering methods. Which means. Actuators A 21, 198-202 (1990).


Sim, W. Y., Yoon, H.J., Jeong, O.C. and Yang S., S. A part change kind micropump with aluminum flap valves. J. Micromech. Microeng. 13, 286-294 (2003).


Jung, J.-Y. & Kwak, H.-Y. Manufacture and take a look at of micropumps with bubbles utilizing an built-in micro-heater. Microfluid. Nanofluidics three, 161-169 (2007).


Shaegh, S.A.M. et al. Microvalve and plug-and-play micropump for quick integration with microfluidic chips. Microfluid. Nanofluidics 19, 557-564 (2015).


Jeong, O.C., Park, S.W., Yang, S.S. and Pak, J.J. Manufacture of a peristaltic PDMS micropump. Which means. Actuators A 123-124, 453-458 (2005).


Jahanshahi, A., Axisa, F. & Vanfleteren, J. Manufacture of an expandable electroosmosis implantable pump. In Microfluidics, BioMEMS and Medical Microsystems IX 7929, 79290R (Worldwide Society of Optics and Photonics, 2011).


Stergiopulos, C., D. Vogt, M. Tolley and M. Wehner. A comfortable combustion pump for comfortable robots. Proc. ASME 2014 Convention on Good Supplies, Adaptive Constructions and Clever Methods SMASIS2014, 1-6 (2014).


Mac Murray, B.C. et al. Poroelastic foams for the straightforward manufacture of complicated complicated robots. Adv. Mater. 27, 6334-6340 (2015).


Loepfe, M., Schumacher, C.M. and Stark, W. J. Design, efficiency and strengthening of sentimental silicone combustion pumps with out bearings. Ind. Eng. Chem. Res. 53, 12519-12256 (2014).

Leave a Reply

Your email address will not be published. Required fields are marked *