Nature News

Understanding the structure of the ubiquitin chain with the assistance of Ub-Clipping


Komander, D. & Rape, M. The code of ubiquitin. Annu. Rev. Biochem. 81, 203-229 (2012).


Swatek, Okay.N. & Komander, D. Modifications of ubiquitin. Cell Res. 26, 399-422 (2016).


Yau, R. & Rape, M. The rising complexity of the ubiquitin code. Nat. Cell Biol. 18, 579-586 (2016).


Ordureau, A., C. Münch and Harper, J. W. Quantify ubiquitin signaling. Mol. Cell 58, 660-676 (2015).


Kim, W. et al. Systematic and quantitative analysis of the modified proteome by ubiquitin. Mol. Cell 44, 325-340 (2011).


Wagner, S.A. et al. A quantitative quantitative research of in vivo ubiquitylation websites on the proteome scale reveals in depth regulatory roles. Mol. Cell Proteomics 10, M111.013284 (2011).


Peng, J. et al. A proteomic strategy to grasp the ubiquitination of proteins. Nat. Biotechnol. 21, 921-92 (2003).


Kirkpatrick, D.S. et al. Quantitative evaluation of ubiquitinated cyclin B1 in vitro reveals a fancy chain topology. Nat. Cell Biol. eight, 700-710 (2006).


Phu, L. et al. Improved strategies of quantitative mass spectrometry for the characterization of advanced ubiquitin indicators. Mol. Cell. Proteomics 10, M110.003756 (2010).


Ordureau, A. et al. Quantitative proteomics reveals a direct-acting mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360-375 (2014).


Wauer, T. et al. The phosphorylation of Ser65 ubiquitin impacts the construction, meeting of the chain and the hydrolysis of ubiquitin. EMBO J. 34, 307-325 (2015).


Ohtake, F. et al. The acetylation of ubiquitin inhibits the elongation of the polyubiquitin chain. EMBO Rep. 16, 192-201 (2015).


Swaney, D.L., Rodríguez-Mias, R.A. and Villén, J. The phosphorylation of ubiquitin in Ser65 impacts its polymerization, targets, and proteome-scale turnover. EMBO Rep. 16, 1131-1144 (2015).


Xu, P. & Peng, J. Characterization of the construction of the polyubiquitin chain by medium-down mass spectrometry. Anal. Chem. 80, 3438-3444 (2008).


Valkevich, E.M., Sanchez, N.A., Ge, Y. & Strieter, E.R. The down-to-earth mass spectrometry permits the characterization of branched ubiquitin chains. Biochemistry 53, 4979-4989 (2014).


Hospenthal, MK, Mevissen, TET and Komander, D. Deubiquitinase-based evaluation of ubiquitin chain structure utilizing ubiquitin chain restriction (UbiCRest) . Nat. Protoc. 10, 349-361 (2015).


Yau, R.G. et al. Meeting and performance of heterotypic chains of ubiquitin within the management of cell cycle high quality and proteins. Cell 171, 918-933.e20 (2017).


Crowe, SO, Rana, ASJB, Deol, KK, Ge, Y. & Strieter, ER The imply mass spectrometry of the ubiquitin chain enrichment permits the characterization of ubiquitin chains branched in cellulo. Anal. Chem. 89, 4428-4434 (2017).


Swatek, Okay.N. et al. The irreversible inactivation of ISG15 by a viral protease permits different methods for detecting infections. Proc. Natl Acad. Sci. USA 115, 2371-2376 (2018).


Steinberger, J. & Skern, T. Foot-and-mouth illness virus proteinase: Construction-function relationships in a proteolytic virulence issue. Biol. Chem. 395, 1179-1185 (2014).


David, Y., Ziv, T., Admon, A. and Navon, A. The E2 ubiquitin conjugation enzymes direct polyubiquitination to the popular lysines. J. Biol. Chem. 285, 8595-8604 (2010).


Hjerpe, R. et al. Efficient safety and isolation of ubiquitylated proteins with the assistance of tandem entities binding to ubiquitin. EMBO Rep. 10, 1250-1258 (2009).


Dammer, E.B. et al. The binding profiles of polyubiquitins in three fashions of proteolytic stress recommend the etiology of Alzheimer's illness. J. Biol. Chem. 286, 10457-10465 (2011).


Elia, A.E.H. et al. Quantitative proteomic atlas of ubiquitination and acetylation within the response to DNA injury. Mol. Cell 59, 867-881 (2015).


Kaiser, S.E. et al. Commonplace Absolute Quantification Technique of Proteins (PSAQ) for the Measurement of Mobile Ubiquitin Swimming pools. Nat. Strategies eight, 691 to 696 (2011).


Harper, J. W., Ordureau, A. and Heo, J.-M. Construct and decode ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93-108 (2018).


Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and high quality management mechanisms in mitochondrial upkeep. Curr. Biol. 28, R170 to R185 (2018).


Sarraf, S.A. et al. Panorama of PARKIN-dependent ubiquity in response to the depolarization of mitochondria. Nature 496, 372-376 (2013).


Ordureau, A. et al. Definition of PARKIN roles and phosphorylation of ubiquitin by PINK1 in mitochondrial high quality management with the assistance of a ubiquitin alternative technique. Proc. Natl Acad. Sci. USA 112, 6637-6642 (2015).


Durcan, T. M. et al. USP8 regulates mitophagy by eliminating K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473-2491 (2014).


Cunningham, C.N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160-169 (2015).


Ordureau, A. et al. Dynamics of mitochondrial PARKIN-dependent ubiquitylation in induced neurons and mannequin programs revealed by proteomics by digital snapshot. Mol. Cell 70, 211-2227.e8 (2018).


Fujiki, Y., Hubbard, A.L., Fowler, S. & Lazarow, P.B. Isolation of intracellular membranes by way of sodium carbonate remedy: utility to the endoplasmic reticulum. J. Cell Biol. 93, 97-102 (1982).


Gersch, M. et al. Mechanism and regulation of deubiquitinase USP30 selective for Lys6. Nat. Struct. Mol. Biol. 24, 920-930 (2017).


Guarne, A. et al. Construction of the foot-and-mouth illness virus protease: papain-like fold, appropriate for automated processing and eIF4G recognition. EMBO J. 17, 7469-74 (1998).


Wauer, T., Simicek, M., Schubert, A. and Komander, D. Mechanism of PARKIN activation induced by phospho-ubiquitin. Nature 524, 370-374 (2015).


Michel, M.A. et al. Meeting and particular recognition of polyubiquitins certain to okay29 and okay33. Mol. Cell 58, 95-109 (2015).


Bremm, A., Freund, S.M.V. & Komander, D. Lysll-bound ubiquitin chains undertake compact conformations and are preferentially hydrolysed by Cezanne deubiquitinase. Nat. Struct. Mol. Biol. 17: 939-947 (2010).


Hospenthal, M.Okay., Freund, S.M.V. & Komander, D. Meeting, evaluation and structure of atypical ubiquitin chains. Nat. Struct. Mol. Biol. 20, 555-565 (2013).


Keusekotten, Okay. et al. OTULIN antagonizes LUBAC signaling by particularly hydrolysing Met1-linked polyubiquitin. Cell 153, 1312-1326 (2013).


Gladkova, C., Maslen, S.L., Skehel, J.M. and Komander, D. Mechanism of activation of parkin by PINK1. Nature 559, 410-414 (2018).


Mevissen, T.E.T. et al. OTU deubiquitinases reveal binding specificity mechanisms and permit for ubiquitin chain restriction evaluation. Cell 154, 169-184 (2013).


Schubert, A.F. et al. Construction of PINK1 in advanced with its ubiquitin substrate. Nature 552, 51-56 (2017).


Komander, D. et al. The construction of the CYLD USP area explains its specificity for polyubiquitin linked to Lys63 and divulges a field module B. Mol. Cell 29, 451-464 (2008).


Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, DR, and Ryan, MT.Evaluation of meeting profiles of subunits encoded by mitochondrial and nuclear DNA in advanced I. mol. Cell. Biol. 27, 4228-4223 (2007).


Fujiki, Y., Fowler, S., H. Shio, Hubbard, A.L. and Lazarow, P.B. Composition of rat liver peroxisome membrane polypeptides and phospholipids: comparability with the endoplasmic reticulum and mitochondrial membranes. J. Cell Biol. 93, 103-110 (1982).


Neuhauser, N., Michalski A, J. Cox and Mann, M. Skilled System for Pc-Assisted Annotation of MS / MS Spectra. Mol. Cell. Proteomics 11, 1500-1509 (2012).


Michel, MA, Swatek, Okay.N., Hospenthal, M.Okay. & Komander, D.Affimers particular ubiquitin binding reveal an summary of K6-related ubiquitin signaling. Mol. Cell 68, 233 to 246.e5 (2017).


Mevissen, T.E.T. et al. Molecular foundation of Lys11-polyubiquitin specificity in Cezanne deubiquitinase. Nature 538, 402-405 (2016).


Maspero, E. et al. The construction of a HECT ligase loaded with ubiquitin reveals the molecular foundation of catalytic initiation. Nat. Struct. Mol. Biol. 20, 696-701 (2013).


Kirisako, T. et al. A fancy of ubiquitin ligase assembles linear chains of polyubiquitin. EMBO J. 25, 4877-4887 (2006).

Leave a Reply

Your email address will not be published. Required fields are marked *