Nature News

Magnetic polaron imaging within the Fermi – Hubbard doped mannequin

1.

Alexandrov, S. & Devreese, J. T. Advances in Polaron Physics (Springer, 2010).

2

Schmitt-Rink, S., Varma, C.M. & Ruckenstein, A. E. Spectral Operate of Holes in a Quantum Antiferromagnet. Phys. Rev. Lett. 60, 2793-2796 (1988).

three

Shraiman, B.I. & Siggia, E.D. Vacant positions in a Heisenberg quantum antiferromagnetism. Phys. Rev. Lett. 61, 467-470 (1988).

four

Sachdev, S. Gap movement in a quantum state of Néel. Phys. Rev. B 39, 12232-12247 (1989).

5

Kane, C.L., Lee, P.A. & Learn, N. Single-hole movement in a quantum antiferromagnetic. Phys. Rev. B 39, 6880-6897 (1989).

6

Dagotto, E., Moreo, A. and Barnes, T. Hubbard mannequin with one gap: properties of the bottom state. Phys. Rev. B 40, 6721-6725 (1989).

7.

Grusdt, F. et al. Parton, principle of magnetic polarons: mesonic resonances and signatures in dynamics. Phys. Rev. X eight, 011046 (2018).

eight

Schrieffer, J. R. Handbook of excessive temperature superconductivity (Springer, 2007).

9

Watanabe, S. et al. Polaron spin present transport in natural semiconductors. Nat. Phys. 10, 308-313 (2014).

ten.

Ramirez, A. P. Magnetoresistance. J. Phys. Condens. Matter 9, 8171-8199 (1997).

11

Lee, P., Nagaosa, N. and Wen, X.G. Doping of a Mott insulator: Physics of superconductivity at excessive temperature. Rev. Mod. Phys. 78, 17-85 (2006).

12

Trugman, S. A. Gap Interplay in a Hubbard Antiferromagnetic and Excessive Temperature Superconductivity. Phys. Rev. B 37, 1597-1603 (1988).

13

Schrieffer, J.R., Wen, X. and Zhang, S. C. Dynamic spin fluctuations and mechanism of the T-top pocket
c superconductivity. Phys. Rev. B 39, 11663-11679 (1989).

14

Anderson, P. W. State of the resonant valence bond in La2CuO4 and superconductivity. Science 235, 1196-1198 (1987).

15

Auerbach, A. & Larson, B. E. Concept of antiferromagnets doped with small polaron. Phys. Rev. Lett. 66, 2262-2265 (1991).

16

Punk, M., Allais, A. & Sachdev, S. Quantum Dimer Mannequin for the Steel Pseudogap. Proc. Natl Acad. Sci. USA 112, 9552-9557 (2015).

17

Gross, C. & Bloch, I. Quantum Simulations of Extremely-Chilly Atoms in Optical Networks. Science 357, 995-1001 (2017).

18

Mazurenko, A. et al. Antiferromagnetic Fermi – Hubbard at chilly atom. Nature 545, 462-466 ​​(2017).

19

Brown, P. T. et al. Poor metallic transport in a Fermi – Hubbard system with chilly atoms. Science 363, 379-382 (2019).

20

Nichols, M.A. et al. Spin transport in a Mott insulation of ultra-cold fermions. Science 363, 383-387 (2019).

21

Salomon, G. et al. Direct commentary of immeasurable magnetism within the Hubbard chains. Nature 565, 56-60 (2019); correction 566, E5 (2019).

22

Boll, M. et al. Spin – and density – resolved microscopy of antiferromagnetic correlations in Fermi – Hubbard chains emblem CNRS emblem INIST. Science 353, 1257-1260 (2016).

23

White, S.R. & Scalapino, D. Gap and Pair Buildings within the Mannequin t – J. Phys. Rev. B 55, 6504-6517 (1997).

24

Martins, G.B., Eder, R. and Dagotto, E. Indications of charge-charge separation within the two-dimensional mannequin t-J. Phys. Rev. B 73, 170-173 (1999).

25

Martins, G. B., C. Gazza, Xavier, C., Feiguin, A. and Dagotto, E. Bands doped in fashions for cuprates rising from one-hole properties of the insulator. Phys. Rev. Lett. 84, 5844-55847 (2000).

26

Parsons, M.F. et al. Discipline – resolved measurement of the spin correlation perform within the Fermi – Hubbard mannequin. Science 353, 1253-1256 (2016).

27

Cheuk, L. W. et al. Spatial correlation of cost and spin within the Fermi – Hubbard 2D mannequin. Science 353, 1260-1264 (2016).

28

Chiu, C.S. et al. Chain fashions within the doped Hubbard mannequin. Preprint on https://arxiv.org/abs/1810.03584 (2018).

29

Devreese, J. T. and Alexandrov, A. S. Froehlich, polaron and bipolar: latest developments. Rep. Prog. Phys. 72, 066501 (2009).

30

Radzihovsky, L. & Sheehy, D. E. Feshbach unbalanced fuel resonant. Rep. Prog. Phys. 73, 076501 (2010).

31.

Stewart, J.T., Gaebler, J.P. and Jin, D. S. Use of photoemission spectroscopy to probe a robust interacting Fermi fuel. Nature 454, 744-747 (2008).

32

Lubasch, M., Murg, V., Schneider, U., Cirac, JI and Bañuls, M.C. Adiabatic preparation of antiferromagnetic Heisenberg utilizing a superlattice optical. Phys. Rev. Lett. 107, 165301 (2011).

33

Kantian, A., Langer, S. and Daley, A. J. Dynamic disentangling and cooling of atoms in bilayer optical gratings. Phys. Rev. Lett. 120, 060401 (2018).

34

Omran, A. et al. Microscopic commentary of Pauli blockade within the degenerate fermionic community gases. Phys. Rev. Lett. 115, 263001 (2015).

35

Trotzky, S. et al. Time-resolved commentary and management of superexchange interactions with ultra-cold atoms in optical networks. Science 319, 295-299 (2008).

36

Khatami, E. & Rigol, M. Thermodynamics of strongly interacting fermions in two-dimensional optical networks. Phys. Rev. A 84, 053611 (2011).

37

Rigol, M., Bryant, T. and Singh, R. R. P. Numerical algorithms of linked clusters. I. Spin programs on sq., triangular and kagomeous networks. Phys. Rev. E 75, 061118 (2007).

38

Buchler, H. P. Microscopic derivation of Hubbard's parameters for chilly atomic gases. Phys. Rev. Lett. 104, 090402 (2010).

Leave a Reply

Your email address will not be published. Required fields are marked *