Nature News

Mapping place and second of vibrations in graphene nanostructures

1.

Krivanek, O.L. et al. Vibrational spectroscopy below the electron microscope. Nature 514, 209-212 (2014).

2

Lagos, M.J., A. Trügler, U. Hohenester and P. Batson, E. E. Mapping of vibrating floor and quantity modes in a single nanocube. Nature 543, 529-532 (2017).

three

Hage, F. S. et al. Vibratory spectroscopy with nanoscale decision in the mean time scale. Sci. Adv. 1, eaar7495 (2018).

four

Dwyer, C. et al. Electron beam mapping of vibration modes with nanoscale spatial decision. Phys. Rev. Lett. 117, 256101 (2016).

5

J. Maultzsch, S. Reich, Thomsen C., Requardt, H. & Ordejón, P. Phonon, dispersion in graphite. Phys. Rev. Lett. 92, 075501 (2004).

6

Mohr, M. et al. Phononic dispersion of graphite by inelastic X-ray scattering. Phys. Rev. B 76, 035439 (2007).

7.

Nicklow, R., Wakabayashi, N. and Smith, H. G. Community Dynamics on Pyrolytic Graphite. Phys. Rev. B 5, 4951-4962 (1972).

eight

Vig, S. et al. Measurement of dynamic cost response of supplies with the assistance of electron vitality weakening spectroscopy (M-EELS) at low vitality and impulse decision. SciPost Phys. three,026 (2017).

9

Oshima, C., Aizawa, T. Souda, R., Ishizawa, Y. and Sumiyoshi, Y. Dispersion curves of graphite floor graphons (0001) over all the vitality area. Widespread Strong State. 65, 1601-1604 (1988).

ten.

Giannozzi, P., De Gironcoli, S., Pavone, P. and Baroni, S. Preliminary calculation of phonon dispersion in semiconductors. Phys. Rev. B 43, 7231-7242 (1991).

11

Van Hove, L. Spatial and temporal correlations and approximate diffusion of Born in interacting particle programs. Phys. Rev. 95, 249-262 (1954).

12

Roth, F., König, A., Fink, J., Buchner, B. and Knupfer, M. Electron vitality loss spectroscopy: a flexible device for the research of plasmonic excitations. J. Spectrosc Electron. Relat. Phenomenon. 195, 85-95 (2014).

13

Nicholls, R. J. et al. Concept of phonon spectroscopy solved by pulse electron microscopy. Phys. Rev. B 99, 094105 (2019).

14

Vogl, P. Microscopic concept of electron-phonon interplay in insulators or semiconductors. Phys. Rev. B 13, 694-704 (1976).

15

Falter, C., Ludwig, W., Maradudin, A., Selmke, M. and Zierau, W., Valencia cost density and efficient prices as a part of the density-response concept. Phys. Rev. B 32, 6510-6517 (1985).

16

Ghosen, P., Michenaud, J.-P. & Gonze, X. Dynamic atomic prices: the case of ABO3 compounds. Phys. Rev. B 58, 6224-6240 (1998).

17

Muller, D. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195-213 (1995).

18

Hage, F.S., Kepaptsoglou, D.M., Ramasse, Q.M. & Allen, L.J. Phonon, atomic decision spectroscopy. Phys. Rev. Lett. 122, 016103 (2019).

19

Venkatraman, Ok., Levin, B.D., Mars, Ok., Rez, P. and Crozier, P. A. Atomic decision vibrational spectroscopy with electron influence diffusion. Pre-print on https://arXiv.org/abs/1812.08895 (2018).

20

T. Sohier, M. Gibertini, M. Calandra, F. F. & Marzari, N. Decomposition of the division of optical phonons into two-dimensional supplies. Nano Lett. 17, 3758 to 3763 (2017).

21

Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program challenge for the quantum simulation of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

Leave a Reply

Your email address will not be published. Required fields are marked *