Nature News

Collisions between chilly molecules in a superconducting magnetic lure

1.

Herbst, E. The chemistry of interstellar area. Chem. Soc. Rev. 30, 168-176 (2001).

2

Ospelkaus, S. et al. Managed chemical reactions within the quantum state of ultra-cold potassium-rubidium molecules. Science 327, 853-857 (2010).

Three

Ni, Ok.-Ok. et al. Dipolar collisions of polar molecules within the quantum regime. Nature 464, 1324-1328 (2010).

four

Chefdeville, S. et al. Remark of partial resonances in low vitality O2 – H2 inelastic collisions. Science 341, 1094-1096 (2013).

5

Vogels, S.N. et al. Diffusion resonances in bimolecular collisions between the NO and H2 radicals problem the theoretical gold normal. Nat. Chem. 10, 435-440 (2018).

6

From Marco, L. et al. A Fermi gasoline degenerated from polar molecules. Science 363, 853-856 (2019).

7.

Herschbach, D.R. in Advances in Chemical Physics (Ross, J.) Ch 9 (Wiley, 1966).

eight

Smith, I. W. M. Reactions at very low temperatures: gasoline kinetics at a brand new frontier. Angew. Chem. Int. Ed. 45, 2842-2861 (2006).

9

Henson, A.B., Gersten, S., Shagam, Y., Narevicius, J. and Narevicius, E. Remark of resonances in Penning ionization reactions at decrease Kelvin temperatures in fused beams. Science 338, 234-238 (2012).

ten.

Jankunas, J., Bertsche, B., Jachymski Ok., Hapka, M. and Osterwalder, A. Dynamics of the gasoline part* + NH3 and Ne* + ND3 Penning ionization at low temperatures. J. Chem. Phys. 140, 244302 (2014).

11

Allmendinger, P. et al. New methodology for finding out low-temperature ion-molecule reactions and software to ( { _ longrightarrow { _ ^ + ) response. Chem. Phys. Chem. 17, 3596-3608 (2016).

12

Wu, X. et al. Cryofuge for chilly collision experiments with sluggish polar molecules. Science 358, 645-648 (2017).

13

Greiner, M., Regal, C.A. & Jin, D.S. Emergence of a Bose – Einstein molecular condensate from a Fermi gasoline. Nature 426, 537-540 (2003).

14

Chin, C. et al. Remark of Feshbach resonances in collisions between ultra-cold molecules. Phys. Rev. Lett. 94, 123201 (2005).

15

Takekoshi, T. et al. Ultracold dense samples of RbCs dipolar molecules within the rovibrational and hyperfine floor state. Phys. Rev. Lett. 113, 205301 (2014).

16

Rvachov, T.M. et al. Lengthy-life ultra-cold molecules with electrical and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

17

Ye, X., Guo, M., González-Martínez, M.L., Quéméner, G. and Wang, D. Collisions of ultra-short molecules of 23Na87Rb with managed chemical reactivity. Sci. Adv. four, eaaq0083 (2018).

18

Barry, J.F., McCarron, D.J., Norrgard, E.B., Steinecker, M.H. and DeMille, D. Magneto-optic trapping of a diatomic molecule. Nature 512, 286-289 (2014).

19

Truppe, S. et al. Molecules cooled beneath the Doppler restrict. Nat. Phys. 13, 1173-1176 (2017).

20

Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

21

Anderegg, L. et al. Magneto-optical radiofrequency trapping of excessive density CaF. Phys. Rev. Lett. 119, 103201 (2017).

22

Anderegg, L. et al. A set of optical tweezers of ultra-cold molecules. Preprint on https://arxiv.org/abs/1902.00497 (2019).

23

Weinstein, J. D., Carvalho R., Guillet T., Friedrich, B. and Doyle, J. M. Magnetic trapping of calcium monohydride molecules at temperatures exceeding millikelvins. Nature 395, 148-150 (1998).

24

Bethlem, H.L. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491-494 (2000).

25

van de Meerakker, S. Y. T., Smeets, P.H.M., Vanhaecke, N., Jongma, R.T. & Meijer, G. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94, 023004 (2005).

26

Haas, D., von Planta, T., Kierspel, D., Zhang and Willitsch, S. Lengthy-term trapping of chilly polar molecules. https://arxiv.org/abs/1904.00713 (2019).

27

Hoekstra, S. et al. Optical pumping of impartial molecules trapped by black physique radiation. Phys. Rev. Lett. 98, 133001 (2007).

28

Hoekstra, S. et al. Electrostatic trapping of metastable NH molecules. Phys. Rev. A, 76, 063408 (2007).

29

Zeppenfeld, M. et al. Sisyphus cooling electrically trapped polyatomic molecules. Nature 491, 570-573 (2012).

30

Liu, Y. et al. Magnetic trapping of chilly methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

31.

Parazzoli, L.P., Fitch, N.J., Zuuchowski, P.S., Hutson, J.M. & Lewandowski, H.J. Essential results of electrical fields on atom-molecule collisions at millikelvins temperatures. Phys. Rev. Lett. 106, 193201 (2011).

32

Hummon, M.T. et al. N + NH chilly collisions in a magnetic lure. Phys. Rev. Lett. 106, 053201 (2011).

33

Singh, V. et al. Chemical reactions of atomic lithium and molecular calcium monohydride at 1 Ok. Phys. Rev. Lett. 108, 203201 (2012).

34

Stuhl, B.Ok. et al. Cooling by evaporation of the dipolar hydroxyl radical. Nature 492, 396-400 (2012).

35

Reens, D., Wu, H., Langen, T. and Ye, J. Management of spin reversals of molecules in an electromagnetic lure. Phys. Rev. A 96, 063420 (2017).

36

Ketterle, W. and Van Druten, N. J. Evaporative Cooling of Trapped Atoms. Adv. AT. Mol. Choose. Phys. 37, 181-236 (1996).

37

Hess, H.F. et al. Magnetic trapping of atomic hydrogen with spin polarization. Phys. Rev. Lett. 59, 672-775 (1987).

38

Akerman, N. et al. Simultaneous deceleration of atoms and molecules in a supersonic beam. New J. Phys. 17, 065015 (2015).

39

Akerman, N. et al. Trapping molecular oxygen with lithium atoms. Phys. Rev. Lett. 119, 073204 (2017).

40

Yokelson, R.J., Lipert, R.J. and Chupka, W. A. ​​Identification of nsσ and ndλ Rydberg states of O2 for n = Three-5. J. Chem. Phys. 97, 6153-6167 (1992).

41

Avdeenkov, A. V. & Bohn, J. L. Ultracold collisions of oxygen molecules. Phys. Rev. A 64, 052703 (2001).

42

Chicken, G. A. Molecular dynamics of gases and direct simulation of gasoline flows (Clarendon Press, 1994).

43

Geppert, W. D. et al. Comparability of cross sections and thermal velocity constants for reactions of C (3PJ) atoms with O2 and NO. Phys. Chem. Chem. Phys. 2, 2873-2881 (2000).

44

Tscherbul, T.V., Suleimanov, Y.V., Aquilanti, V. & Krems, R. V. Modification of the magnetic discipline of ultra-cold molecule collisions. New J. Phys. 11, 055021 (2009).

45

Perez-Rios, J., Campos-Martinez, J. & Hernandez, M. I. Ultracold. O2 + O2 collisions in a magnetic discipline: on the function of the potential vitality floor. J. Chem. Phys. 134, 124310 (2011).

46

Even, U. Even – Lavie valve as a supply of excessive depth supersonic beams. EPJ Tech. Instrum. 2, 17 (2015).

47

Even, U., Jortner, J., Noy, D., Lavie, N. and Cossart-Magos, C. Cooling of enormous molecules beneath the formation of 1 Ok and He aggregates. J. Chem. Phys. 112, 8068-8071 (2000).

48.

Sundaram, A. et al. 2G HTS wires made on a Hastelloy substrate 30 μm thick. Supercond. Sci. Technol. 29, 104007 (2016).

Leave a Reply

Your email address will not be published. Required fields are marked *