Nature News

A dominant inhabitants of large galaxies optically invisible in the beginning of the universe

1.

Madau, P. & Dickinson, M. Historical past of the formation of cosmic stars. Annu. Rev Astron. Astrophysics 52, 415-486 (2014).

2

Walter, F. et al. HDF 850.1 intense in a galaxy overdensity at z ≈ 5.2 within the Hubble deep discipline. Nature 486, 233-236 (2012).

Three

Riechers, D.A. et al. An enormous galaxy of most stars masked by mud at a redshift of 6.34. Nature 496, 329-333 (2013).

Four

Marrone, D. P. et al. Galaxy progress in an enormous halo over the primary billion years of cosmic historical past. Nature 553, 51-54 (2018).

5

Dowell, C.D. et al. HerMES: Galaxies with excessive redshift candidates found with Herschel / SPIRE. Astrophysics J. 780, 75 (2013).

6

Glazebrook, Ok. et al. An enormous and resting galaxy with a redshift of three,717. Nature 544, 71-74 (2017).

7.

Schreiber, C. et al. Close to infrared spectroscopy and star formation histories of three ≤ z ≤ Four galaxies at relaxation. Astron. Astrophysics 618, A85 (2018).

eight

Spitler, L. R. et al. Exploration of the huge inhabitants of galaxies z = Three-Four with ZFOURGE: prevalence of dusty and resting galaxies. Astrophysics J. 787, L36 (2014).

9

Williams, C.C. et al. The progenitors of compact galaxies of the early sort with excessive redshift. Astrophysics J. 780, 1 (2014).

ten.

Huang, J.-S. et al. 4 RAIC sources with an especially purple H – [3.6] colour: passive or dusty galaxies at z> Four.5? Astrophysics J. 742, L13 (2011).

11

Wang, T. et al. Infrared colour choice of large galaxies at z> Three. Astrophys. J. 816, 84 (2016).

12

Swinbank, A. M. et al. An ALMA examine of galaxies smaller than the millimeter within the Chandra Deep Subject South prolonged: the properties of SMGs within the far infrared. Mon. Don’t. R. Astron. Soc. 438, 1267-1287 (2014).

13

Schreiber, C. et al. Distribution of mud temperature and common to whole infrared colour for galaxies in star formation at zero <z <Four. Astron. Astrophysics 609, A30 (2018).

14

Daddi, E. et al. Two vibrant submillimeter galaxies in a z = Four.05 protocol in GOODS-North and correct infrared photometric purple shifts. Astrophysics J. 694, 1517 (2009).

15

Schreiber, C. et al. Jekyll & Hyde: excessive relaxation and darkening in a pair of large 1.5 Gyr galaxies after the Massive Bang. Astron. Astrophysics 611, A22 (2018).

16

Riguccini, L. et al. The composite nature of galaxies obscured by mud (DOG) in z ~ 2-Three within the COSMOS – I discipline. Far – infrared view. Mon. Don’t. R. Astron. Soc. 452, 470-485 (2015).

17

Bouwens, R. J. et al. The slopes of the UV continuum at z ~ Four-7 from the observations HUDF09 + ERS + CANDELS: discovery of a well-defined color-magnitude relationship for UV for galaxies in star formation. Astrophysics J. 754, 83 (2012).

18

Straatman, C.M.S. et al. A big inhabitants of large galaxies resting at z ~ Four of ZFOURGE. Astrophysics J. 783, L14 (2014).

19

Henriques, B.M.B. et al. Formation of galaxies within the Planck cosmology – I. Correspondence of the noticed evolution of the formation charge of stars, colours and stellar plenty. Mon. Don’t. R. Astron. Soc. 451, 2663-2680 (2015).

20

Snyder, G.F. et al. Huge slender pairs measure the fast meeting of galaxies throughout sturdy redshift mergers. Mon. Don’t. R. Astron. Soc. 468, 207-216 (2017).

21

Steinhardt, C. L., P. Capak, Masters, D. and Speagle, J. S. The extremely early downside of the galaxy. Astrophysics J. 824, 21 (2016).

22

Straatman, C.M.S. et al. FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet far-infrared catalogs, photometrically low bandwidths with common bandwidth with improved accuracy, stellar plenty and affirmation of the galaxy at relaxation as much as z ~ Three.5. Astrophysics J. 830, 51 (2016).

23

da Cunha, E. et al. An ALMA examine of lower than one millimeter galaxies within the prolonged Chandra Deep Subject South: bodily properties derived from ultraviolet-radio modeling. Astrophysics J. 806, 110 (2015).

24

Schreiber, C. et al. Herschel's view of the dominant mode of galaxy progress from z = Four to the current day. Astron. Astrophysics 575, A74 (2015).

25

Ono, Y. et al. Wonderful analysis on optically vibrant stall with Subaru HSC (GOLDRUSH). I. The UV brightness features at z ~ Four-7 are calculated with half 1,000,000 dropouts within the sky at 100 ° C. Publ. Astron. Soc. JPN 70, S10 (2018).

26

Harikane, Y. et al. GOLDRUSH. II. The clustering of z ~ Four-6 galaxies is revealed with half 1,000,000 dropouts over the 100 ° C space akin to 1 Gpc3. Publ. Astron. Soc. JPN 70, S11 (2018).

27

Hartley, W. G. et al. Research the emergence of the purple sequence by clustering galaxies: plenty of host halo at z> 2. Don’t. R. Astron. Soc. 431, 3045-3059 (2013).

28

Mo, H.J. & White, S.D.M. Abundance and grouping of black halos in the usual deCDM cosmogony. Mon. Don’t. R. Astron. Soc. 336, 112-118 (2002).

29

Fakhouri, O., Ma, C.-P. & Boylan-Kolchin, M. Fusion and historic mass-assembly charges of darkish matter halos in each millennium simulations. Mon. Don’t. R. Astron. Soc. 406, 2267-2278 (2010).

30

Chabrier, G. Stellar and Substellative Preliminary Mass Operate of G. Galactic. Publ. Astron. Soc. Pacif. 115, 763-795 (2003).

31.

Ashby, M.L.N. et al. SEDS: the Spitzer Prolonged Deep Survey. Survey plan, photometry and deep enumeration of RAIC sources. Astrophysics J. 769, 80 (2013).

32

Franco, M. et al. GOODS-ALMA: 1.1 mm rise within the galaxy. I. Catalog of optically darkish sources and galaxies. Astron. Astrophysics 620, A152 (2018).

33

Yamaguchi, Y. et al. ALMA survey twenty-six arcmin2 on GOODS-S to millimeter (ASAGAO): ALMA sources weak and near infrared and black. Pre-print on https://arXiv.org/abs/1903.02744 (2019).

34

Skelton, R.E. et al. 3D-HST Photometric catalogs chosen by WFC3 within the 5 CANDELS / 3D-HST fields: photometry, photometric redshift and stellar plenty. Astrophysics J. Suppl. Ser. 214, 24 (2014).

35

Nonino, M. et al. Deep U and GOODS-South R-band imaging: observations, information discount and early outcomes. Astrophysics J. Suppl. Ser. 183, 244-260 (2009).

36

Hildebrandt, H. et al. GaBoDS: The in-depth investigation of Garching-Bonn. V. Publication of knowledge from the ESO normal public survey. Astron. Astrophysics 452, 1121-1128 (2006).

37

Gawiser, E. et al. Yale-Chile Multiwavelength Survey (MUSYC): survey design, intensive public UBVRIz 'pictures and Prolonged Hubble Deep Subject-South catalogs. Astrophysics J. Suppl. Ser. 162, pp. 1-19 (2006).

38

Cardamone, C.N. et al. Yale-Chile Multiwavelength Survey (MUSYC): Excessive-bandwidth deep optical imaging and 32-band top quality photometric redshifts in ECDF-S. Astrophysics J. Suppl. Ser. 189, 270-285 (2010).

39

Giavalisco, M. et al. In-depth investigation into the origins of huge observatories: first outcomes of optical and near-infrared imagery. Astrophysics J. 600, L93-L98 (2004).

40

Grogin, N.A. et al. CANDELS: Investigation of deep extragalactic legacy in near-infrared cosmic meeting. Astrophysics J. Suppl. Ser. 197, 35 (2011).

41

Koekemoer, A.M. et al. CANDELS: Extragalactic extragalactic investigation in depth throughout the framework of the Cosmic Meeting – The observations of the Hubble Area Telescope, its imagery information merchandise and its mosaics. Astrophysics J. Suppl. Ser. 197, 36 (2011).

42

Retzlaff, J. et al. In-depth investigation into the origins of huge observatories. Close to-infrared VLT / ISAAC imaging of the GOODS-South discipline. Astron. Astrophysics 511, A50 (2010).

43

Hsieh, B.-C. et al. Close to-infrared Taiwan ECDFS examine: ultra-deep J and KS imaging within the prolonged deep Chandra-South discipline. Astrophysics J. Suppl. Ser. 203, 23 (2012).

44

Fontana, A. et al. Hawk-I survey UDS and GOODS (HUGS): Survey plan and enumeration of the Ok. Astron band. Astrophysics 570, A11 (2014).

45

Furusawa, H. et al. Subaru / XMM-Newton deep depth sounding (SXDS). II. Catalogs of optical and photometric imagery. Astrophysics J. Suppl. Ser. 176, 1-18 (2008).

46

Momcheva, I.G. et al. The 3D-HST survey: Hubble Area Telescope WFC3 / G141, spectra spectra, purple offsets and emission line measurements per 100,000 galaxies. Astrophysics J. Suppl. Ser. 225, 27 (2016).

47

Lawrence, A. et al. The Infrared Deep Sky survey of the UKIRT (UKIDSS). Mon. Don’t. R. Astron. Soc. 379, 1599-1617 (2007).

48.

Cuillandre, J.-C. J. et al. Introduction to the newest model of the CFHT Legacy Survey (CFHTLS T0007). Proc. SPIE 8448, 84480M (2012).

49

Taniguchi, Y. et al. Cosmic Evolution Survey (COSMOS): Subaru observations of the Cosmos HST discipline. Astrophysics J. Suppl. Ser. 172, 9-28 (2007).

50

McCracken, H.J. et al. The investigation within the close to infrared COSMOS-WIRCam. I. Candidates of passive galaxies forming stars chosen by BzK in z 1.Four. Astrophysics J. 708, 202-217 (2010).

51.

McCracken, H.J. et al. UltraVISTA: a brand new ultra-deep investigation within the infrared in COSMOS. Astron. Astrophysics 544, A156 (2012).

52.

Sanders, D.B. et al. S-COSMOS: Spitzer survey on the Hubble Area Telescope ACS 2 deg2 COSMOS I space: survey technique and preliminary evaluation. Astrophysics J. Suppl. Ser. 172, 86-98 (2007).

53

Hodge, J.A. et al. Kiloparsec-scale mud disks in vibrant submillimetric high-redshift galaxies. Astrophysics J. 833, 103 (2016).

54

Schreiber, C. et al. Observational proof of the gradual decline within the effectivity of star formation in large galaxies over the past 10 gyrs. Astron. Astrophysics 589, A35 (2016).

55

Wang, W.-H. et al. SCUBA-2 Extremely Deep Imaging EAO survey (STUDIES): low counts at 450 μm. Astrophysics J. 850, 37 (2017).

56.

Casey, C.M. et al. Characterization of chosen SCUBA-2 450 μm and 850 μm galaxies within the COSMOS discipline. Mon. Don’t. R. Astron. Soc. 436, 1919-1954 (2013).

57

Geach, J.E. et al. SCUBA-2 Cosmology Inheritance Survey: variety of virgin fields of chosen galaxies at 450 μm and their contribution to the cosmic infrared background. Mon. Don’t. R. Astron. Soc. 432, 53-61 (2013).

58.

Geach, J.E. et al. Historic survey on SCUBA-2 cosmology: 850 μm maps, catalogs and digital counts. Mon. Don’t. R. Astron. Soc. 465, 1789-1806 (2017).

59

Bethermin, M., H. Dole, M. Cousin, M. and Bavouzet, N. The variety of sub-millimeters counts at 250 μm, 350 μm and 500 μm within the BLAST information. Astron. Astrophysics 516, A43 (2010).

60.

Smolcic, V. et al. The massive Three GHz VLA-COSMOS undertaking: publication of the supply catalog and steady information. Astron. Astrophysics 602, A1 (2017).

61.

Sobral, D. et al. COSMOS lower with SC4K: evolution of typical Lyα emitters and of the Lyα exhaust fraction of z ~ 2 to six. Mon. Don’t. R. Astron. Soc. 476, 4725-4752 (2018).

62

Finkelstein, S.L., Rhoads, J.E., S. Malhotra, S., Grogin, N. and Wang, J. Results of mud geometry in Lyα galaxies at z = Four.Four. Astrophysics J. 678, 655-668 (2008).

63.

Steidel, C., C., Giavalisco, M., Pettini, M. Dickinson, M. and Adelberger, KL Spectroscopic affirmation of a inhabitants of regular star-forming galaxies at zz> Three offsets. Astrophys. J. 462, L17 (1996).

64.

Bouwens, R. J. et al. The UV brightness works throughout purple shifts z ~ Four to z ~ 10: 10,000, galaxies from inherited HST fields. Astrophysics J. 803, 34 (2015).

65.

Brammer, G.B., van Dokkum, P.G. & Coppi, P. EAZY: A quick photometric code and public redshift. Astrophysics J. 686, 1503-1513 (2008).

66.

Kriek, M. et al. Extremely-near-infrared spectrum of a galaxy at relaxation compact at z = 2.2. Astrophysics J. 700, 221-231 (2009).

67.

Calzetti, D. The opacity of the star-forming galaxy mud. Publ. Astron. Soc. Pacif. 113, 1449-1485 (2001).

68.

Landy, S.D. & Szalay, A. S. Bias and variance of angular correlation features. Astrophysics J. 412, 64-71 (1993).

69

Limber, D. N. The evaluation of extragalactic nebula counts by way of fluctuating density discipline. Astrophysics J. 117, 134 (1953).

70.

Croom, S. M. & Shanks, T. Radio-Silent QSO Environments – I. The Correlation of QSOs and BJ <23 Galaxies. Mon. Don’t. R. Astron. Soc. 303, 411-422 (1999).

71.

Peebles, P. J. E. Ideas of Bodily Cosmology (Princeton Univ Press, 1993).

72.

Combes, F. et al. Submillimetric galaxy with z = 5.2 lenses within the Abell 773 discipline. HLSJ091828.6 + 514223. Astron. Astrophysics 538, L4 (2012).

73.

Vieira, J. D. et al. Dusty starry galaxies in the beginning of the Universe, revealed by the gravitational lens. Nature 495, 344-347 (2013).

74.

Carilli, C.L. & Yun, M.S. The radio / submillimeter spectral index as a redshift indicator. Astrophysics J. 513, L13-L16 (1999).

75.

Boquien, M. et al. CIGALE: a python code analyzing the emissions of GALaxy. Astron. Astrophysics 622, A103 (2019).

76.

Bruzual, G. and Charlot, S. Stellar, inhabitants synthesis on the 2003 decision. Mon. Don’t. R. Astron. Soc. 344, 1000-1028 (2003).

77.

Draine, B. T. & Li, A. Infrared emission of interstellar mud. IV The silicate-graphite-PAH mannequin within the post-Spitzer period. Astrophysics J. 657, 810-837 (2007).

78.

Inoue, A. Ok. Ultraviolet to optical spectral traits of the remainder of the photographs of galaxies extraordinarily poor in metallic and freed from metallic. Mon. Don’t. R. Astron. Soc. 415, 2920-2931 (2011).

Leave a Reply

Your email address will not be published. Required fields are marked *