Nature News

Construction and mechanism of the cation-chloride cotransporter NKCC1

1.

Gamba, G. Molecular physiology and physiopathology of electron-neutral cation-chloride cotransporters. Physiol. 85, 423-493 (2005).

2

Haas, M. and Forbush, B., III. The Na – Ok – Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62,515-534 (2000).

Three

Arroyo, J.P., Kahle, Ok.T. and Gamba, G. The SLC12 household of chloride co-transporters coupled to a impartial cation. Mol. Med Elements 34, 288-298 (2013).

four

Russell, J. M. Cotransport sodium – potassium – chloride. Physiol. Rev. 80, 211-276 (2000).

5

Kaila, Ok., Value, T.J., Payne, J.A., Puskarjov, M. and Voipio, J.Cotransportants of cations and chlorides in neuronal improvement, plasticity and illness. Nat. Rev. Neurosci. 15, 637-654 (2014).

6

Gagnon, Ok.B. & Delpire, E. Transporter Physiology SLC12: Classes of inherited human genetic mutations and knockouts of genetically modified mice. A m. J. Physiol. Cell Physiol. 304, C693 – C714 (2013).

7.

Duarte, J.D. & Cooper-DeHoff, R. M. Mechanisms for reducing blood stress and metabolic results of thiazide and thiazide-type diuretics. Skilled rev. Cardiovasc. Ther. eight, 793-802 (2010).

eight

ALLHAT brokers and coordinators for the ALLHAT collaborative analysis group. Predominant findings in high-risk hypertensive sufferers randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: ALLHAT trial (antihypertensive and lipid-lowering remedy to forestall coronary heart assaults ). Jam. Med. Assoc. 288, 2981-2997 (2002).

9

Schrier, R. W. Use of diuretics in coronary heart failure and cirrhosis. Semin. Nephrol. 31, 503-512 (2011).

ten.

Markadieu, N. & Delpire, E. Physiology and Pathophysiology of Transporters SLC12A1 / 2. Pflug. Camber. 466, 91-105 (2014).

11

Flemmer, A.W., I. Gimenez, Dowd, B.F., Darman, R.B. and Forbush, B. Activation of the Na – Ok – Cl cotransporter NKCC1 detected with a phospho – particular antibody. J. Biol. Chem. 277, 37551-37558 (2002).

12

Hartmann, A.M. & Nothwang, H.G. Molecular and evolutionary overview of the structural group of cotransportants of cationic chloride. Entrance. Cell. Neurosci. eight, 470 (2015).

13

Payne, J. A. Molecular functioning of cation chloride co-carriers: ion binding and inhibitory interplay. Curr. Excessive. Membr. 70, 215-237 (2012).

14

Gamba, G. et al. Molecular cloning, major construction and characterization of two members of the electroneutral cotransporter household of sodium – (potassium) – mammalian chloride expressed within the kidneys. J. Biol. Chem. 269, 17713-1772 (1994).

15

Yamada, J. et al. NKCC1 mediates in immature rat neocortical neurons favoring the absorption of ClAB selling depolarization. J. Physiol. 557, 829-841 (2004).

16

Abbas, L. & Whitfield, T.T. Nkcc1 (Slc12a2) is required for regulation of endolymph quantity in otic vesicle and swimbladder quantity in zebrafish larvae. Growth 136, 2837-2848 (2009).

17

Flagella, M. et al. Mice missing the basolateral Na – Ok – 2Cl cotransporter exhibit impaired epithelial chloride secretion and are profoundly deaf. J. Biol. Chem. 274, 26946-2955 (1999).

18

Somasekharan, S., Tanis, J. & Forbush, B. Remainders of loop diuretic and ion binding revealed by scanning mutagenesis of the transmembrane helix Three (TM3) of the Na – Ok – Cl cotransporter (NKCC1). . J. Biol. Chem. 287, 17308-1717 (2012).

19

Moore-Hoon, M.L. & Turner, R.J. The structural unit of the Na + -Ok + -2Cl- secretion cotransporter (NKCC1) is a homodimer. Biochemistry 39, 3718-3724 (2000).

20

Pedersen, M., Carmosino, M. and Forbush, B. Intramolecular and intermolecular fluorescence resonance power switch in a fluorescently labeled Na – Ok – Cl cotransporter (NKCC1): sensitivity to regulatory conformational change and cell quantity. J. Biol. Chem. 283, 2663-2674 (2008).

21

Yamashita, A., Singh, S.Ok., Kawate, T., Jin, Y. and Gouaux, E. Crystalline construction of a bacterial homologue of Na + / Cl – dependent neurotransmitter transporters. Nature 437, 215-223 (2005).

22

Ye, ZY, Li, DP, Byun, HS, Li, L. & Pan, HL NKCC1 trigger disruption of chloride homeostasis within the hypothalamus and improve neuronal exercise – sympathetic drive in l & # 39; hypertension. J. Neurosci. 32, 8560-8568 (2012).

23

Gupta, Ok. et al. The function of interfacial lipids within the stabilization of membrane protein oligomers. Nature 541, 421-424 (2017).

24

Isenring, P. & Forbush, B. III. Binding of ions and bumetanide by the Na – Ok – Cl cotransporter. Significance of transmembrane domains. J. Biol. Chem. 272, 24556-24562 (1997).

25

Gagnon, Ok.B., England, R. & Delpire, E. A single binding motif is required for the SPAK activation of the Na – Ok – 2Cl cotransporter. Cell. Physiol. Biochem. 20, 131-142 (2007).

26

Parvin, M. N., Gerelsaikhan, T. and Turner, R. J. C-terminal cytosolic finish areas of the NKCC1 secretion Na + -Ok + -2Cl- cotransporter are required for its homodimerization. Biochemistry 46, 9630-9637 (2007).

27

Nezu, A., Parvin, M.N. & Turner, R. J. A hydrophobic tetrad conserved close to the C-terminus of the secretory cotransporter of Na + -Ok + -2Cl- (NKCC1) is required for its correct intracellular therapy. J. Biol. Chem. 284, 6869-6876 (2009).

28

Monette, M. Y. & Forbush, B. Regulatory activation accompanies actions within the C finish of the cotransporter Na – Ok – Cl (NKCC1). J. Biol. Chem. 287, 2210-2220 (2012).

29

Rinehart, J. et al. Regulated phosphorylation websites controlling the exercise of the cotransporter Ok – Cl Cell 138, 525-536 (2009).

30

Warmuth, S., Zimmermann, I. & Dutzler, R. X-ray construction of the C-terminal area of a prokaryotic cotransporter of cationic chloride. Construction 17, 538-546 (2009).

31.

Parvin, M. N. & Turner, R. J. Identification of key residues concerned in dimerization of the secretory cotransporter Na + -Ok + -2Cl-NKCC1. Biochemistry 50, 9857-9864 (2011).

32

Harding, M. M. Steel-ligand geometry associated to proteins and proteins: sodium and potassium. Acta Crystallogr. D 58, 872-874 (2002).

33

Krishnamurthy, H., Piscitelli, C.L. and Gouaux, E. Unlocking the molecular secrets and techniques of sodium-coupled transporters. Nature 459, 347-355 (2009).

34

Faham, S. et al. The crystalline construction of a sodium galactose transporter reveals a mechanistic overview of the Na + / sugar symport. Science 321, 810-814 (2008).

35

Weyand, S. et al. Construction and molecular mechanism of a transporter of the nucleobase-cation-symport-1 household. Science 322, 709-713 (2008).

36

Wahlgren, W. Y. et al. The outward-bound construction bonded to the substrate of a Na + coupled sialic acid symporter reveals a brand new Na + website. Nat. Frequent. 9, 1753 (2018).

37

Perez, C., Koshy, C., Yildiz, O. & Ziegler, C. Alternate entry mechanism in conformationally uneven trimers of the BetP betaine transporter. Nature 490, 126-130 (2012).

38

Dutzler, R., Campbell, E. B. and MacKinnon, R. Gating Selectivity Filter in ClC Chloride Channels. Science 300, 108-112 (2003).

39

Knoers, N. V. Gitelman syndrome. Adv. Renal chronicle Dis. 13, 148-154 (2006).

40

Wang, L., Dong, C., Xi, Y.G. and Su, X. Thiazide-sensitive Na + -Cl- cotransporter: genetic polymorphisms and human illnesses. Acta Biochim. Biophys. Peach. 47, 325-334 (2015).

41

Alguel, Y., Cameron, A., Diallinas, G. and Byrne, B. Oligomerization of carriers: kind and performance. Biochem. Soc. Trans. 44, 1737-1744 (2016).

42

Kowarz, E., Loscher, D. and Marschalek, R. Optimized Sleeping Magnificence transposons quickly generate steady transgenic cell strains. Biotechnol. J. 10, 647-653 (2015).

43

Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).

44

Rohou, A. & Grigorieff, N. CTFFIND4: Speedy and correct estimation of defocus from digital micrographs. J. Struct. Biol. 192, 216-221 (2015).

45

Ru, H. et al. Molecular mechanism of V (D) J recombination from advanced synaptic constructions RAG1 – RAG2. Cell 163, 1138-1152 (2015).

46

Scheres, S. H. RELION: Implementation of a Bayesian method to the willpower of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).

47

Zivanov, J. et al. New instruments for the automated willpower of the excessive decision cryo-EM construction in RELION-Three. eLife 7, e42166 (2018).

48.

Nakane, T., Kimanius, D., Lindahl, E. and Scheres, S. H. Characterization of molecular motions in cryo-EM particle information by multibody refinement in RELION. eLife 7, e36861 (2018).

49

Swint-Kruse, L. & Brown, C.S. Resmap: automated illustration of macromolecular interfaces within the type of two-dimensional networks. Bioinformatics 21, 3327-3328 (2005).

50

Lyumkis, D., Brilot, A.F., Theobald, D.L. and Grigorieff, N. Cryo-EM picture classification based mostly on probability utilizing FREALIGN. J. Struct. Biol. 183, 377-388 (2013).

51.

Källberg, M. et al. Modeling protein construction utilizing templates utilizing the RaptorX internet server. Nat. Protoc. 7, 1511-1522 (2012).

52.

Emsley, P., Lohkamp, ​​B., Scott, W. G. and Cowtan, Ok. Traits and improvement of Coot. Acta Crystallogr. D 66, 486-501 (2010).

53

Waterhouse, A. et al. SWISS-MODEL: modeling of homology of constructions and protein complexes. Nucleic Acids Res. 46, W296 to W303 (2018).

54

Adams, P.D. et al. PHENIX: an entire system based mostly on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).

55

Chen, V.B. et al. MolProbity: validation of the construction any atom for macromolecular crystallography. Acta Crystallogr. D 66, 12-21 (2010).

56.

Betz, R.M. Dabble v.2.6.Three. https://doi.org/10.5281/zenodo.836914 (2017).

57

Huang, J. et al. CHARMM36m: an improved power discipline for folded and intrinsically disordered proteins. Nat. Strategies 14, 71-73 (2017).

58.

Klauda, ​​J.B. et al. Replace of the CHARMM all-atom additive power discipline for lipids: validation on six sorts of lipids. J. Phys. Chem. B 114, 7830-7843 (2010).

59

R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand and R. Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPU. 2. Express meshing of Ewald solvent particles. J. Chem. Comput Principle. 9, 3878-3888 (2013).

60.

Case, D.A. et al. AMBER (College of California, San Francisco, 2017).

61.

Hopkins, C.W., Le Grand, S., Walker, R.C. & Roitberg, A. E. Molecular dynamics at very long time step by distribution within the mass of hydrogen. J. Chem. Comput Principle. 11, 1864-1874 (2015).

62

Ryckaert, J., Ciccotti, G. and Berendsen, H. J. Numerical integration of Cartesian equations of movement of a constrained system: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341 (1977).

63.

Humphrey, W., Dalke, A. and Schulten, Ok. VMD: Visible Molecular Dynamics. J. Mol. Graph.14, 33-38, 27-28 (1996).

64.

Roe, D. R. and Cheatham, T. E. III. PTRAJ and CPPTRAJ: software program for processing and analyzing molecular dynamics trajectory information. J. Chem. Comput Principle. 9, 3084-3095 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *