Nature News

The lysine harvest is an antioxidant technique that triggers the subterranean metabolism of polyamines.

1.

Ralser, M. et al. Dynamic re-routing of carbohydrate flux is important for combating oxidative stress. J. Biol. 6, 10 (2007).

2

Kuehne, A. et al. Acute activation of the pentose phosphate oxidative pathway as a first-line response to oxidative stress in human pores and skin cells. Mol. Cell 59, 359-371 (2015).

Three

Mima, S. et al. Identification of the TPO1 gene in yeast and its human orthologue TETRAN, liable for resistance to NSAIDs. FEBS Lett. 581, 1457-1463 (2007).

four

Albertsen, M., Bellahn, I., Krämer, R. and Waffenschmidt, S. Location and performance of the yeast a number of transporter Tpo1p. J. Biol. Chem. 278, 12820-12285 (2003).

5

Uemura, T., Tachihara Okay., Tomitori H., Kashiwagi Okay. and Okay. Traits of TPO1 polyamine transporter and regulation of its exercise and its mobile localization by phosphorylation. J. Biol. Chem. 280, 9646-9652 (2005).

6

Krüger, A. et al. The Tpo1 mediated spermine and spermidine export controls the cell cycle time and multiplies by a number of occasions the expression of the antioxidant protein in the course of the oxidative stress response. EMBO Rep. 14, 1113-1119 (2013).

7.

Ludwig, C. et al. SWATH-MS primarily based on impartial information acquisition for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

eight

Tomar, P.C., Lakra, N. & Mishra, S.N. Cadaverine. Conduct of the sign of the plant eight, 10 (2013).

9

Yamamoto, Y., Miwa, Y., Miyoshi, Okay., Furuyama, J. and Ohmori, H. The Escherichia coli ldcC gene encodes one other lysine decarboxylase, most likely a constitutive enzyme. Genes Genet. Syst. 72, 167-172 (1997).

ten.

Igarashi, Okay. et al. Formation of a compensatory polyamine by mutants requiring an Escherichia coli polyamine throughout development within the absence of polyamines. J. Bacteriol. 166, 128-134 (1986).

11

Whitney, P.A. & Morris, D.R. Polyester auxotrophs of Saccharomyces cerevisiae. J. Bacteriol. 134, 214-220 (1978).

12

Taxis, C. A security for degradation of ornithine decarboxylase. Microb. Cell 2, 174-177 (2015).

13

Tyagi, A.Okay., Tabor, C.W. & Tabor, H. Ornithine Decarboxylase from Saccharomyces cerevisiae. Purification, properties and regulation of the exercise. J. Biol. Chem. 256, 12156-12163 (1981).

14

Dufe, V. T. et al. Structural overview of the inhibition of decarboxylases of ornithine decarboxylase from human and Leishmania donovani by 1-amino-oxy-Three-aminopropane. Biochem. J. 405, 261-268 (2007).

15

Mülleder, M. et al. Purposeful metabolomics describes the biosynthetic regulome of yeast. Cell 167, 553-565 (2016).

16

Park, J. O. et al. Metabolite concentrations, fluxes and free energies indicate environment friendly use of enzymes. Nat. Chem. Biol. 12, 482-489 (2016).

17

Bianchi, F. et al. The asymmetry of inner and exterior affinity transport constants explains the unidirectional lysine stream in Saccharomyces cerevisiae. Sci. Rep. 6, 31443 (2016).

18

Ough, CS, Huang, Z., An, D. & Stevens, D. Absorption of amino acid by 4 industrial yeasts at two totally different development and fermentation temperatures: results on excretion and reabsorption of l & # 39; urea. A m. J. Enol. Vitic. 42, 26-40 (1991).

19

Tucci, A.F. Inhibition of the biosynthesis of lysine in yeast. J. Bacteriol. 99, 624-625 (1969).

20

Feller, A., Ramos, F., Piérard, A. and Dubois, E. In Saccharomyces cerevisae, the suggestions inhibition of isoenzymes of homocitrate synthase by lysine modulates the activation of lysine. LYS gene expression by Lys14p. EUR. J. Biochem. 261, 163-170 (1999).

21

Andi, B., West, A.H. & Prepare dinner, P.F. Mechanism for the regulation of the histidine-tagged homocitrate synthase of Saccharomyces cerevisiae. I. Kinetic research. J. Biol. Chem. 280, 31624-31632 (2005).

22

Szappanos, B. et al. An built-in strategy to characterize networks of genetic interplay in yeast metabolism. Nat. Broom. 43, 656-662 (2011).

23

Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927-963 (2015).

24

Nogae, I. & Johnston, M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96, 161-169 (1990).

25

Slekar, Okay.H., Kosman, D.J. and Culotta, V.C. Yeast copper / zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles within the safety of oxidative stress. J. Biol. Chem. 271, 28831-2886 (1996).

26

Zhang, J. et al. Engineering of a NADPH / NADP + redox biosensor in yeast. ACS Synth. Biol. 5, 1546-1556 (2016).

27

Toroser, D., Yarian, C.S., Orr, W.C. and Sohal, R.S. Mechanisms of regulation of γ-glutamylcysteine ​​ligase. Biochim. Biophys. Acta Gen. Subj. 1760, 233-244 (2006).

28

Shenton, D. & Grant, C.M. The S-thiolation protein targets glycolysis and protein synthesis in response to oxidative stress within the yeast Saccharomyces cerevisiae. Biochem. J. 374, 513-519 (2003).

29

Grüning, N.-M. et al. Pyruvate kinase triggers a metabolic suggestions loop that controls redox metabolism in breast cells. Cell Metab. 14, 415-427 (2011).

30

Campbell, Okay., Vowinckel, J., Keller, M.A. & Ralser, M. Metabolism of methionine modifies resistance to oxidative stress through the pentose phosphate pathway. Antioxyd. Redox sign. 24, 543-547 (2016).

31.

Peter, J. et al. Evolution of the genome in 1,zero11 isolates of Saccharomyces cerevisiae. Nature 556, 339-344 (2018).

32

Dever, T. E. & Ivanov, I. P. Roles of polyamines in translation. J. Biol. Chem. 293, 18719-18729 (2018).

33

Morano, Okay.A., Grant, C.M. and Moye-Rowley, W.S. The response to warmth shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157-1195 (2012).

34

Brachmann, C.B. et al. Saccharomyces cerevisiae-derived designer deletion pressure S288C: A helpful set of strains and plasmids for gene disruption by PCR and different purposes. Yeast 14, 115-132 (1998).

35

Mülleder, M., Campbell, Okay., Matsarskaia, O., Eckerstorfer, F. & Ralser, M. Saccharomyces cerevisiae, single copy plasmids for auxotrophy compensation, multi-marker choice and neighborhood design cooperating metabolically. F1000 Res. 5, 2351 (2016).

36

Ralser, M. et al. A catabolic block doesn’t clarify sufficient how 2-deoxy-d-glucose inhibits cell development. Proc. Natl Acad. Sci. USA 105, 17807-17811 (2008).

37

Campbell, Okay. et al. Communities that set up themselves permit the cooperative change of metabolites in a eukaryote. eLife four, e09943 (2015).

38

Kahm, M. et al. benefit: adjustment of organic development curves with R. J. Stat. Softw. 33, 1-21 (2010).

39

Reyes-Becerril, M., Esteban, M.A., Tovar-Ramírez, D. and Ascencio-Valle, F. Dedication of polyamine in numerous yeast strains Debaryomyces hansenii by excessive stress liquid chromatography. Meals Chem. 127, 1862-1865 (2011).

40

Sasidharan, Okay., T. Soga, M. Tomita and M. D. B. An extraction protocol of yeast metabolites optimized for time collection analyzes. PLoS ONE 7, e44283 (2012).

41

Mo, M.L., Palsson, B.O. and Herrgård, M. J. Relating extracellular metabolomic measurements to intracellular stream states in yeast. BMC Syst. Biol. Three, 37 (2009).

42

Heirendt, L. et al. Creation and evaluation of fashions primarily based on biochemical constraints with the assistance of COBRA Toolbox v3.zero. Nat. Protoc. 14, 639-702 (2019).

43

Godon, C. et al. The stimulus H2O2 in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 (1998).

44

Mi, H., Muruganujan A., Casagrande, J.T. & Thomas, P.D. Evaluation of gene operate on a big scale with the PANTHER classification system. Nat. Protoc. eight, 1551-1566 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *