Nature News

Spectroscopic signatures of multi-body correlations in magical angle twisted bilayer graphene

1.

Cao, Y. et al. Half-filled correlated insulating conduct in magical-angle graphene supergrids. Nature 556, 80-84 (2018).

2

Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

three

Lee, P., Nagaosa, N. and Wen, X. G. Doping of a Mott Insulator: Physics of Excessive Temperature Superconductivity. Rev. Mod. Phys. 78, 17 (2006).

four

Trambly of Laissardière, G., D. Mayou and L. Magaud. Location of Dirac electrons in rotating graphene bilayers. Nano Lett. 10, 804-808 (2010).

5

Bistritzer, R. & MacDonald, A. H. Twisted double layer graphene strips. Proc. Natl Acad. Sci. USA 108, 12233-12237 (2011).

6

Li, G. et al. Statement of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109-113 (2010).

7.

Brihuega, I. et al. Display the intrinsic and strong nature of van Hove singularities in twisted bilayer graphene by tunneling microscopy and theoretical evaluation. Phys. Rev. Lett. 109, 196802 (2012).

eight

Wong, D. et al. = Native spectroscopy of the moiré-induced electron construction in grid-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015).

9

Kerelsky, A. et al. Magic angle spectroscopy. Pre-print on https://arxiv.org/abs/1812.08776 (2018).

ten.

Choi, Y. et al. Imaging digital correlations in graphene twisted bilayer close to the magic angle. Preprint on https://arxiv.org/abs/1901.02997 (2019).

11

Yankowitz, M. et al. Adjustment of superconductivity in twisted bilayer graphene. Science 363, 1059-1064 (2019).

12

Lu, X. et al. Superconductors, orbital magnets, and correlated states in magical angle bilayer graphene. Preprint on https://arxiv.org/abs/1903.06513 (2019).

13

Sharpe, A. L. et al. Ferromagnetism emerge almost three quarters filling with twisted bilayer graphene. Preprint at http://arxiv.org/abs/1901.03520 (2019).

14

Cao, Y. et al. Unusual metallic in magic angle graphene with dissipation near Planckian. Pre-print on https://arxiv.org/abs/1901.03710 (2019).

15

Polshyn, H. et al. Phonon scattering dominated the transport of electrons in twisted bilayer graphene. Pre-print on https://arxiv.org/abs/1902.00763 (2019).

16

Koshino, M. et al. Most localized Wannier orbitals and prolonged Hubbard mannequin for twisted bilayer graphene. Phys. Rev. X eight, 031087 (2018).

17

Kang, J. & Vafek, O. Symmetry, maximally situated Wannier states and a low vitality mannequin for slender bands of twisted bilayer graphene. Phys. Rev. X eight, 031088 (2018).

18

Po, H. C., L. Zou, A. Vishwanath, and T. Senthil. Origin of Mott insulating conduct and superconductivity in twisted bilayer graphene. Phys. Rev. X eight, 031089 (2018).

19

Lian, B., Wang, Z. and Bernevig, B. A. Twisted bilayer graphene: phonon superconductor. Phys. Rev. Lett. 122, 257002 (2019).

20

Xie, M. & MacDonald, A. H. On the character of the correlated insulating states in twisted bilayer graphene. Preprint on the tackle https://arxiv.org/abs/1812.04213 (2019).

21

Cao, Y. et al. Remoted states induced by a superlattice and orbits protected by a valley in graphene Twisted bilayer Phys. Rev. Lett. 117, 116804 (2016).

22

Kim, Ok. et al. Van der Waals heterostructures with excessive precision rotation alignment. Nano Lett. 16, 1989-1995 (2016).

23

Nam, N. N. T. and Koshino, M. Leisure of the community and modulation of the vitality band in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

24

Yoo, H. et al. Atomic reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448-453 (2019).

25

Bi, Z., Yuan, N. F. Q. and Fu, L. Design of a flat band by constraint. Preprint at https://arxiv.org/abs/1902.10146 (2019).

26

Efros, A. L. Coulomb hole in disordered isolators. J. Phys. C 9, 2021 (1976).

27

Ashoori, R.C., Lebens, J.A., Bigelow, N.P. & Silsbee, R.H. Phys. Rev. Lett. 64, 681-684 (1990).

28

Eisenstein, J.P., Pfeiffer, L.N. & West, Ok.W. Coulomb, barrier between two-dimensional parallel digital methods. Phys. Rev. Lett. 69, 3804-3807 (1992).

29

Feldman, B.E. et al. Statement of a nematic quantum Corridor liquid on the floor of bismuth. Science 354, 316 (2016).

30

Randeria, M.T. et al. Multichannel topological boundary modes interacting in a Corridor Valley quantum system. Nature 566, 363-367 (2019).

31.

Ochi, M., Koshino, M. and Kuroki, Ok. Risk of correlated insulating states in magically angle twisted bilayer graphene in strongly competing interactions. Phys. Rev. B 98, 081102 (R) (2018).

Leave a Reply

Your email address will not be published. Required fields are marked *