Nature News

Maximized interactions of electrons on the magic angle in twisted bilayer graphene

1.

Bistritzer, R. & MacDonald, A. H. Twisted double layer graphene strips. Proc. Natl Acad. Sci. USA 108, 12233-12237 (2011).

2

Lopes dos Santos, J.M.B., Peres, N.M. R. & Castro Neto, A. H. Double layer graphene with twisted construction: digital construction. Phys. Rev. Lett. 99, 256802 (2007).

three

Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

four

Yankowitz, M. et al. Adjustment of superconductivity in twisted bilayer graphene. Science 363, 1059-1064 (2019).

5

Cao, Y. et al. Half-filled correlated insulating conduct in magical-angle graphene supergrids. Nature 556, 80-84 (2018).

6

Wu, F., T. Lovorn, E. Tutuc, and E. MacDonald, A. H. Hubbard. Mannequin physics of moiré bands primarily based on transition steel dichalcogenides. Phys. Rev. Lett. 121, 026402 (2018).

7.

Xian, L., Kennes, D.M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multi-flat bands and robust correlations in twisted bilayer nitride boron. Pre-print on https://arxiv.org/abs/1812.08097 (2018).

eight

Wong, D. et al. = Native spectroscopy of the moiré-induced electron construction in grid-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015).

9

Li, G. et al. Statement of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109-113 (2010).

ten.

Brihuega, I. et al. Exhibit the intrinsic and strong nature of van Hove singularities in twisted bilayer graphene by tunneling microscopy and theoretical evaluation. Phys. Rev. Lett. 109, 196802 (2012).

11

Yin, L.-J., Qiao, J.-B., Zuo, W.-J., Li, W.-T. & He, L. Experimental proof of non-abelian gauge potentials in twisted graphene bilayers. Phys. Rev. B 92, 081406 (2015).

12

Yuan, N. F. Q. & Fu, L. Mannequin for the metal-insulator transition in graphene supergrids and past. Phys. Rev. B 98, 045103 (2018).

13

Po, H.C., Zou, L.J., Vishwanath, A. & Senthil, T. Origin of Mott's insulating conduct and superconductivity in twisted bilayer graphene. Phys. Rev. X eight, 031089 (2018).

14

Padhi, B., Setty, C. and Phillips, P. W. Twisted bilayer-doped graphene near magical angles: proximity to the crystallization of Wigner, not an insulation of Mott. Nano Lett. 18, 6175-6180 (2018).

15

Isobe, H., Yuan, N. F. Q. and Fu, L. Unconventional density and superconductivity waves in twisted bilayer graphene. Preprint on https://arxiv.org/abs/1805.06449 (2018).

16

Kennes, D.M., Lischner, J. & Karrasch, C. Sturdy correlations and d + id superconductivity in twisted bilayer graphene. Pre-print on https://arxiv.org/abs/1805.06310 (2018).

17

Huang, S. et al. Topologically protected helical states in graphene bilayer with minimal torsion. Phys. Rev. Lett. 121, 037702 (2018).

18

Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Pre-print on https://arxiv.org/abs/1804.03806 (2018).

19

Carr, S., Fang, S., Zhu, Z. and Kaxiras, E. An actual steady mannequin for the low-energy digital states of twisted bilayer graphene. Preprint on https://arxiv.org/abs/1901.03420 (2019).

20

Trambly of Laissardière, G., D. Mayou and L. Magaud. Location of Dirac electrons in rotating graphene bilayers. Nano Lett. 10, 804-808 (2010).

21

Grüneis, A. et al. Electron-electron correlation in graphite: mixed examine of angle-resolved photoemission and basic ideas. Phys. Rev. Lett. 100, 037601 (2008).

22

Laissardière, G., Mayou, D. and Magaud, L. Trambly. Numerical research of confined states in graphene rotation bilayers. Phys. Rev. B 86, 125413 (2012).

23

Xia, F., Farmer, D. B., Lin, Y.-m. & Avouris, P. Graphene subject impact transistors with a excessive on / off present ratio and a big transport hole at room temperature. Nano Lett. 10, 715-718 (2010).

24

Cao, Y. et al. Unusual steel in magic angle graphene with dissipation near Planckian. Pre-print on https://arxiv.org/abs/1901.03710 (2019).

25

Koralek, J.D. et al. Angle-resolved laser-based photoemission, sudden approximation and quasi-particle spectral peaks in BSCCO. Phys. Rev. Lett. 96, 017005 (2006).

26

Mo, S.Ok. et al. Peak of quasiparticles vital within the photoemission spectrum of the steel part of V2O3. Phys. Rev. Lett. 90, 186403 (2003).

27

Valla, T. et al. Coherence – inconsistency and dimensional crossover in metals strongly correlated in layers. Nature 417, 627-630 (2002).

28

Rosenthal, E.P. et al. Visualization of digital nematicity and unidirectional antiferroic fluctuations at excessive temperature in NaFeAs. Nat. Phys. 10, 225-232 (2014).

29

Li, S.-Y. et al. Highlighting electron-electron interactions across the Van Hove singularities of a moiré graphene superlattice. Preprint on https://arxiv.org/abs/1702.03501 (2017).

30

Andrade, E.F. et al. Visualize the nonlinear coupling between stress and digital nematicity in iron pnictes by elastoscopic tunneling spectroscopy. Preprint on https://arxiv.org/abs/1812.05287 (2018).

31.

Kim, Y. et al. Cost reversal and topological part transition at a torsion angle induced by the van Hove singularity of graphene bilayer. Nano Lett. 16, 5053-5059 (2016).

32

Girit, Ç. Ö. & Zettl, A. Welding on a single atomic layer. Appl. Phys. Lett. 91, 193512 (2007).

33

Wang, Z.F., Liu, F. & Chou, M. Y. Spectrum on the fractal Landau degree in twisted bilayer graphene. Nano Lett. 12, 3833-3838 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *