Nature News

Low common liquid-cloud-water response to anthropogenic aerosols

1.

Boucher, O. et al. Clouds and aerosols. Local weather Change 2013: The Fundamentals of the Bodily Sciences (eds Stocker, T.F. et al.) (Cambridge Univ Press, 2013).

2

Stevens, B., Sherwood, S., Bony, S. and Webb, M. Prospects for narrowing the boundaries of local weather sensitivity to Earth's equilibrium. Future Lands. four, 512-522 (2016).

three

Andreae, M., Jones, C. and Cox, P. The present aerosol cooling implies a brilliant future. Nature 435, 1187-1190 (2005).

four

Millar, R. et al. Budgets and emission pathways appropriate with the limitation of warming to 1.5 ° C. Nat. Geosci. 10, 741-747 (2017); Correction 11, 454-455 (2018).

5

Twomey, S. Air pollution and Planetary Albedo. Atmos. About. eight, 1251-1256 (1974).

6

Breon, F. Aerosol impact on cloud droplet dimension monitored by satellite tv for pc. Science 295, 834-838 (2002).

7.

Feingold, G., W. Eberhard, D. Veron and M. Previdi. First measurements of the Twomey oblique impact utilizing floor primarily based distant sensors. Geophysics Res. Lett. 30, 1287 (2003).

eight

McCoy, D. et al. Pure aerosols clarify the seasonal and spatial patterns of cloud albedo within the Southern Ocean. Sci. Adv. 1, e1500157 (2015).

9

Storelvmo, T. Aerosol results on local weather by way of blended part clouds and ice clouds. Annu. Rev. Planet Earth. Sci. 45, 199-222 (2017).

ten.

Lohmann, U. et al. Complete aerosol impact: radiative forcing or disruption of the radiative flux? Atmos. Chem. Phys. 10, 3235-3246 (2010).

11

Stevens, B. & Feingold, G. Unravel the results of aerosols on clouds and precipitation in a buffered system. Nature 461, 607-613 (2009).

12

Wang, M. et al. Dangerous results of aerosols on cloud lifespan due to satellite tv for pc observations of A-Practice. Geophysics Res. Lett. 39, L15709 (2012).

13

Suzuki, Okay., Stephens, G. & Lebsock, M. Impact of aerosol on sizzling rain formation course of: satellite tv for pc observations and modeling. J. Geophys. Res. D 118, 170-184 (2013).

14

Albrecht, B. Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227-1230 (1989).

15

Ackerman, A., Kirkpatrick, M., Stevens, D. and Toon, O. The influence of moisture over stratiform clouds on oblique aerosol climatic forcing. Nature 432, 1014-1017 (2004).

16

Bretherton, C., Blossey, P. and Uchida, J. Sedimentation, coaching effectivity and stratocumulus albedo subtropical. Geophysics Res. Lett. 34, L03813 (2007).

17

Wooden, R. Suppression of the oblique results of aerosols in marine stratocumulus by thinning clouds. J. Atmos. Sci. 64, 2657-2669 (2007).

18

Small, J., P. Chuang, Feingold, G. and H. H. Can aerosols scale back cloud life? Geophysics Res. Lett. 36, L16806 (2009).

19

Chen, Y., Christensen, M., Stephens, G. & Seinfeld, J. Satellite tv for pc-based estimation of worldwide aerosol-cloud radiative forcing by sizzling marine clouds. Nat. Geosci. 7, 643-646 (2014).

20

Lebsock, M., Stephens, G. & Kummerow, C. Multi-sensor satellite tv for pc observations of aerosol results on sizzling clouds. J. Geophys. Res. 113, D15205 (2008).

21

Mauger, G. & Norris, J. Biais climate bias in satellite tv for pc estimates of aerosol-cloud relations. Geophysics Res. Lett. 34, L16824 (2007); Correction 35, L07815 (2008).

22

Christensen, M. et al. Unveiling aerosol – cloud interactions – Half 1: Cloud contamination in satellite tv for pc merchandise improves the estimation of oblique aerosol forcing. Atmos. Chem. Phys. 17, 13151-13164 (2017).

23

Neubauer, D., Christensen, M., Poulsen, C. and Lohmann, U. Aerosol-cloud interplay disclosure – Half 2: Minimizing the results of aerosol swelling and moist sweeping in ECHAM6 – HAM2 for comparability with the satellite tv for pc information. Atmos. Chem. Phys. 17.113165-13185 (2017).

24

Grosvenor, D. et al. Distant sensing of the focus of droplets in sizzling clouds: assessment of the present state of data and views. Rev. Geophys. 56, 409-453 (2018).

25

Rosenfeld, D. et al. Aerosol-induced droplet concentrations dominate the protection and water of low oceanic clouds. Science 363, eaav0566 (2019); correction 364, eaay4194 (2019)

26

Gryspeerdt, E. et al. Limitation of the affect of aerosol on the trail of liquid water in clouds. Atmos. Chem. Phys. Talk about. 19: 5331-5347 (2018).

27

Toll, V., Christensen, M., Gassó, S. and Bellouin, N. A volcano and traces of vessels point out an extreme enhance within the quantity of aerosol-induced cloud water in a local weather mannequin. Geophysics Res. Lett. 44, 12492-12500 (2017).

28

Malavelle, F. et al. Robust constraints on aerosol – cloud interactions on account of volcanic eruptions. Nature 546, 485-491 (2017); erratum 551, 256 (2017).

29

Christensen, M. & Stephens, G. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying vessels: 2. Impacts of haze on precipitating clouds. J. Geophys. Res. 117, D11203 (2012).

30

Platnick, S. et al. MODIS Cloud Optics and Microphysics: Assortment 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Distant Sens. 55, 502-525 (2017).

31.

Durkee, P. et al. Traits of Composite Ship Tracks. J. Atmos. Sci. 57, 2542-2553 (2000).

32

Mülmenstädt, J. & Feingold, G. Radiative Forcing of Aerosol – Cloud Interactions in Liquid Clouds: Preventing and Embracing Uncertainty. Curr. Clim. Change Rep. four, 23-40 (2018).

33

King, M., S. Platnick, W. Menzel, S. Ackerman, S. & Hubanks, P. House and temporal distribution of clouds noticed by MODIS aboard the Terra and Aqua satellites. IEEE Trans. Geosci. Distant Sens. 51, 3826-3852 (2013).

34

Rosenfeld, D. Suppression of rain and snow by city and industrial air air pollution. Science 287, 1793-1796 (2000).

35

Christensen, M., Chen, Y. and Stephens, G. Oblique impact in aerosol dictated by liquid clouds. J. Geophys. Res. 121, 14636-14650 (2016).

36

Wooden, R. Stratocumulus. Mon Weath. Rev. 140, 2373-2423 (2012).

37

Greenwald, T. A. 2-year comparability of cloud stream pathways in AMSR-E and MODIS clouds. Geophysics Res. Lett. 36, L20805 (2009).

38

Possner, A., Wang, H., Wooden, R., Caldeira, Okay. and Ackerman, T. The effectiveness of radiative aerosol disturbances – clouds generated by near-surface emissions in cell stratocumuli deep open. Atmos. Chem. Phys. 18, 17475-17488 (2018).

39

Hobbs, P. et al. Ship emissions with respect to their results on clouds. J. Atmos. Sci. 57, 2570-2590 (2000).

40

Huang, X. et al. Results of aerosol – radiation interplay on rainfall through the biomass burning season in East China. Atmos. Chem. Phys. 16, 10063-10082 (2016).

41

Gordon, H. et al. Important radiative results of smoke within the Southeast Atlantic. Atmos. Chem. Phys. 18, 15261-15289 (2018).

42

Tao, W. et al. Position of atmospheric aerosol focus in deep convective precipitation: simulations on cloud decision mannequin. J. Geophys. Res. 112, D24S18 (2007).

43

Yuan, T., Remer L., Pickering Okay., and H., H. Proof of elevated lightning exercise and convective convection by aerosol. Geophysics Res. Lett. 38, L04701 (2011).

44

Penner, J., Zhou C., Garnier A., ​​and Mitchell, D. Oblique results of anthropogenic aerosols in cirrus clouds. J. Geophys. Res. 123, 11652-11677 (2018).

45

Ghan, S. et al. Challenges in limiting the results of anthropogenic aerosols on cloud radiative forcing utilizing present spatio-temporal variability. Proc. Natl Acad. Sci. USA 113, 584-5811 (2016); correction 113, E3049 (2016).

46

Chen, Y. et al. Prevalence of albedo decrease clouds within the tracks of ships. Atmos. Chem. Phys. 12, 8223-8355 (2012).

47

Coakley, J., Bernstein, R. and Durkee, P. Impact of ship effluents on cloud reflectivity. Science 237, 1020-1022 (1987).

48.

Fioletov, V.E. et al. World catalog of main sources of SO2 and emissions derived from the ozone monitoring instrument. Atmos. Chem. Phys. 16, 11497-111519 (2016).

49

Grosvenor, D. & Wooden, R. Impact of photo voltaic zenith angle on optical and microphysical extractions of MODIS clouds in marine liquid water clouds. Atmos. Chem. Phys. 14, 7291-7321 (2014).

50

Segrin, M., Coakley, J. & Tahnk, W. MODIS, observations of traces of ships in summer season stratus off the west coast of america. J. Atmos. Sci. 64, 4330-43 (2007).

51.

Carn, S., Fioletov V., McLinden C., Li, C. and Krotkov, N. A decade of worldwide emissions of volcanic SO2 measured from area. Sci. Rep. 7, 44095 (2017).

52.

Quaas, J., Boucher, O., Bellouin, N. and Kinne, S. Satellite tv for pc-based estimation of direct and oblique climatic forcing of aerosols. J. Geophys. Res. 113, D05204 (2008).

53

Kato, S. et al. Floor irradiations appropriate with short-wave and long-wave irradiations at altitude, derived from CERES. J. Clim. 26, 2719-2740 (2013).

54

Brenguier, J. et al. Radiative properties of boundary layer clouds: efficient radius of the droplets as a operate of the focus in numbers. J. Atmos. Sci. 57, 803-821 (2000).

55

Quaas, J., Boucher, O. and Lohmann, U. Limitation of the overall oblique impact of aerosols in LMDZ and ECHAM4 GCMs utilizing MODIS satellite tv for pc information. Atmos. Chem. Phys. 6, 947-955 (2006).

56.

Bellouin, N., J. Quaas, J. Morcrette and O. Boucher. Estimates of radiative forcing of aerosols from the brand new MACC evaluation. Atmos. Chem. Phys. 13, 2045-2062 (2013).

57

Stephens, G., Gabriel, P. and Partain, P. Parameterization of atmospheric radiative switch. Half I: validity of straightforward fashions. J. Atmos. Sci. 58, 3391-3409 (2001).

58.

Ackerman, A. et al. Aerosol results on cloud albedo: evaluation of Twomey's cloud susceptibility parameter utilizing vessel trajectory measurements. J. Atmos. Sci. 57, 2684-2695 (2000).

59

Platnick, S. & Twomey, S. Dedication of the sensitivity of cloud albedo to modifications in droplet focus with the superior very excessive decision radiometer. J. Appl. Meteorol. 33, 334-347 (1994).

60.

Christensen, M. & Stephens, G. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying vessels: proof of deepening clouds. J. Geophys. Res. 116, D03201 (2011).

61.

Dee, D. et al. ERA-Interim re-analysis: configuration and efficiency of the info assimilation system. Q. J. Royal Meteorol. Soc. 137, 553-597 (2011).

62

Rosenfeld, D., Wang, H. and Rasch, P. The roles of the efficient radius of cloud fall and LWP in figuring out properties of rain in marine stratocumulus. Geophysics Res. Lett. 39, L13801 (2012).

63.

Winker, D. et al. The CALIPSO mission: a world 3D view of aerosols and clouds. Taurus. A m. Meteorol. Soc. 91, 1211-1230 (2010).

Leave a Reply

Your email address will not be published. Required fields are marked *