Nature News

Excessive efficiency natural electroluminescent diodes extraordinarily thick

1.

Tak, Y.-H., Kim, Okay.-B., Park, H.-G., Lee, Okay.-H. & Lee, J.-R. Standards for the skinny movie of ITO (indium tin oxide) because the decrease electrode of an natural gentle emitting diode. Skinny Strong Movies 411, 12-16 (2002).

2

Okay, Okay.-H. et al. Extremely-thin, easy clear electrode for versatile, leak-free natural light-emitting diodes. Sci. Rep. 5, 9464 (2015).

three

Yamamori, A., Adachi, C., Koyama, T. and Taniguchi, Y. Doped natural electroluminescent diodes having a gap transport layer of 650 nm in thickness. Appl. Phys. Lett. 72, 2147-2149 (1998).

Four

Okay. Walzer, B. Maennig, M. Pfeiffer and M. Okay. Okay. Excessive effectivity natural gadgets primarily based on electrically doped transport layers. Chem. Rev. 107, 1233-1271 (2007).

5

Matsushima, T. et al. Interfacial cost switch and cost era in natural digital gadgets. Org. Electron. 12, 520-528 (2011).

6

Nakanotani, H. & Adachi, C. Natural electroluminescent diodes containing multilayers of natural single crystals. Appl. Phys. Lett. 96, 053301 (2010).

7.

Comin, R. et al. Structural, optical and digital research of lead perovskites with broad bandgap halides. J. Mater. Chem. C three, 8839-8843 (2015).

Eight

Maculan, G. et al. CH3NH3PbCl3 single crystals: reverse temperature crystallisation and blind UV photodetector. J. Phys. Chem. Lett. 6, 3781-3786 (2015).

9

Lampert, M.A. and Mark, P. Injection of present into solids (Educational, 1970).

ten.

Naka, S., H. Okada, H. Onnagawa, Yamaguchi, Y. and Tsutsui, T. Provider. Transport properties of natural supplies for the operation of an EL system. Synth. Meet. 111-112, 331-333 (2000).

11

Tian, ​​Y. et al. Answer-treated organometallic halide perovskite-based gap for extremely environment friendly natural light-emitting diodes. Adv. Electron. Mater. 2, 1600165 (2016).

12

Zhang, Y. et al. Efficient purple phosphorescent natural electroluminescent diodes primarily based on totally inorganic lead-lead perovskite perovskite solution-treated as a gap transport layer. Org. Electron. 50, 411 to 417 (2017).

13

Wang, N. et al. Perovskite electroluminescent diodes primarily based on self-organized and solution-treated a number of quantum wells. Nat. Photon. 10, 699-704 (2016).

14

Xiao, Z. et al. Environment friendly perovskite electroluminescent diodes with nanoscale crystallites. Nat. Photon. 11,108-115 (2017).

15

Liao, L.-S., Slusarek, W.Okay., Hatwar, T.Okay., Ricks, M.L. and Consolation, D.L. Tandem natural light-emitting diode utilizing hexaazatriphenylene hexacarbonitrile within the intermediate connector. Adv. Mater. 20, 324-329 (2008).

16

Kim, B.S., H. Chae, H. Okay. and Cho., S. M. Electrical and optical analyzes of tandem light-emitting diodes with natural cost era layer. AIP Adv. Eight, 065303 (2018).

17

Peedikakkandy, L. & Bhargava, P. Optical, structural and photoluminescence traits depending on the composition of perovskites of tin halide and cesium. RSC Adv. 6, 19857 to 19,860 (2016).

18

Baldo, M., A., Lamansky, S., Burrows, E., Thompson, M., E., and Forrest, S., R. Very excessive effectivity natural electroluminescent gadgets primarily based on electrophosphorescence. Appl. Phys. Lett. 75, Four-6 (1999).

19

Uoyama, H., Okay. Goushi, Okay. Shizu, H. Nomura, H. and Adachi, C. Extremely Efficient Natural Electroluminescent Diodes with Delayed Fluorescence. Nature 492, 234-238 (2012).

20

Baldo, M.A., Adachi, C. and Forrest, S.R. Transient evaluation of natural electrophosphorescence. II. Transient evaluation of triplet-triplet annihilation. Phys. Rev. B 62, 10967-10977 (2000).

21

Masui, Okay., Nakanotani, H. & Adachi, C. An evaluation of exciton annihilation in high-efficiency, thermally activated, time-delayed, blue-sky natural light-emitting diodes. Org. Electron. 14, 2721-2726 (2013).

22

Cho, S.-H. et al. Natural light-emitting diodes with low microcavity and improved optical coupling. Decide. Specific 16, 12632-12639 (2008).

23

Xie, G. et al. Measurement and structuring of the spatial coherence size of natural light-emitting diodes. Laser Photonics Rev. 10, 82-90 (2016).

24

Lee, C. & Kim, J.-J. Improved decoupling of OLED gentle with low haze by inserting randomly dispersed nanopillar arrays fashioned by facet section separation of polymer blends. Small 9, 3858-3863 (2013).

25

Kim, Okay.-H., Moon, C.-Okay., Lee, J.-H., Kim, S.-Y. & Kim, J.-J. Extremely environment friendly natural electroluminescent diodes with excessive quantum yield phosphorescent emitters and horizontal orientation of transition dipole moments. Adv. Mater. 26, 3844-3847 (2014).

26

Frischeisen, J., Yokoyama, D., Adachi, C. and Brütting, W. Dedication of the orientation of molecular dipoles in skinny fluorescent natural movies doped by photoluminescence measurements. Appl. Phys. Lett. 96, 073302 (2010).

27

Leguy, A.M.A. et al. Experimental and theoretical optical properties of perovskites with methylammonium lead halide. Nanoscale Eight, 6317-6327 (2016).

28

Yokoyama, D., Sakaguchi, A., Suzuki, M. and Adachi, C. Horizontal molecular orientation in vacuum-deposited amorphous natural movies of gap and electron transport supplies. Appl. Phys. Lett. 93, 173302 (2008).

29

Nakahara, M. et al. Provider Entice Evaluation in Steady Operation Four.Four'-bis[N-(1-naphthyl)-N-phenylamino]aluminum-based biphenyl aluminum / tris (Eight-hydroxyquinoline) aluminum light-emitting diodes by measurement of thermally stimulated present. Jpn. J. Appl. Phys. 46, L636 to L639 (2007).

30

Nakanotani, H., Masui, Okay., Nishide, J., Shibata, T., and Adachi, C., C. Promising stability of excessive effectivity natural light-emitting diodes primarily based on thermally activated delayed fluorescence. Sci. Rep. three, 2127 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *