Nature News

Parallel entanglement operations on a common ion lure quantum laptop

1.

Nielsen, M.A. & Chuang, I.L. Quantum Computation and Quantum Data (Cambridge Univ Press, 2011).

2

Cleve, R. & Watrous, J. Quick parallel circuits for the quantum Fourier rework. In Proc. 41st Annual Symposium on the Foundations of Informatics 526-536 (IEEE, 2000).

three

Maslov, D. Deep linear stabilizer circuit and quantum Fourier rework with out auxiliary qubits in quantum architectures to finite neighbors. Phys. Rev. A 76, 052310 (2007).

Four

Maslov, D., Dueck, G.W., Miller, D.M. and Negrevergne, C. Simplification of quantum circuit and degree compaction. IEEE Trans. Integration of computer-assisted design. Syst. Circuits 27, 436-444 (2008).

5

Fowler, A.G., Devitt, S.J. and Hollenberg, L.C. L. Implementation of Shor's algorithm on a nearest nearest linear qubit community. Quantum Inf. Comput. Four, 237-251 (2004).

6

Nam, Y. & Maslov, D. Low Price Quantum Circuits for Classically Intractable Cases of the Hamiltonian Dynamics Simulation Drawback. npj Quantum Inf. 5, 44 (2019).

7.

Kivlichan, I. D. et al. Quantum simulation of an digital construction with linear depth and connectivity. Phys. Rev. Lett. 120, 110501 (2018).

eight

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. Introduction to Algorithms third edn (MIT Press, 2009).

9

Steane, A. M. House, time, parallelism and noise necessities for dependable quantum computing. Fortschr. Phys. 46, 443-457 (1999).

ten.

Aharonov, D. and Ben-Or, M. Fault tolerant quantum computation with fixed error fee. SIAM J. Comput. 38, 1207-1282 (2008).

11

Wineland, D. & Blatt, R. States entangled with atomic ions trapped. Nature 453, 1008-1014 (2008).

12

Monroe, C. and Kim, J. Scaling the ion lure quantum processor. Science 339, 1164-1169 (2013).

13

Devoret, M.H. & Schoelkopf, R. J. Superconducting circuits for quantum data: a perspective. Science 339, 1169-1174 (2013).

14

Feynman, R. P. Quantum mechanical computer systems. Optics Information 11, 11-20 (1985).

15

Draper, T.G., Kutin, S.A., Rains, E.M. and Svore, Okay.M. A quantum adder with logarithmic depth. Quantum Inf. Comput. 6, 351-369 (2006).

16

Debnath, S. et al. Demonstration of a small programmable quantum laptop with atomic qubits. Nature 536, 63-66 (2016).

17

Linke, N. M. et al. Experimental comparability of two architectures of quantum computing. Proc. Natl Acad. Sci. USA 114, 3305-3310 (2017).

18

Mølmer, Okay. & Sørensen, A. Multiparticulate entanglement of scorching trapped ions. Phys. Rev. Lett. 82, 1835-1838 (1999).

19

Islam, R. et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583-587 (2013).

20

Bohnet, J.G. et al. Quantum dynamics of spin and entanglement era with tons of of trapped ions. Science 352, 1297-1301 (2016).

21

Kokail, C. et al. Variational quantum simulation with automated verification of community fashions. Nature 569, 355-360 (2019).

22

Friis, N. et al. Remark of entangled states in a totally managed 20-qubit system. Phys. Rev. X eight, 021012 (2018).

23

Zhu, S.-L., Monroe, C. & Duan, L.-M. Quantum calculation of trapped ions with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

24

Zhu, S.-L., Monroe, C. & Duan, L.-M. Quantum gates at arbitrary velocity in giant crystal ions with minimal management of laser beams. Europhys. Lett. 73, 485-491 (2006).

25

Choi, T. et al. Optimum quantum management of multimode couplings between qubits of trapped ions for an evolutionary entanglement. Phys. Rev. Lett. 112, 190502 (2014).

26

Leung, P.H. et al. Sturdy 2-bit gates in a linear ion crystal utilizing a frequency modulated driving force. Phys. Rev. Lett. 120.020501 (2018).

27

Inexperienced, T. J. and Biercuk, M. J. Decoupling and suppression of part modulated errors in qubit-oscillator programs. Phys. Rev. Lett. 114, 120502 (2015).

28

Lu, Y. et al. Aggressive world gates on arbitrary qubits of ions. Nature https://doi.org/10.1038/s41586-Zero19-1428-Four (2019).

29

García-Ripoll, J. J., P. Zoller and J. Cirac. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. A 71, 062309 (2005).

30

Figgatt, C. Development and programming of a quantum laptop with common ion lure. PhD Thesis, Univ. of Maryland (2018).

31.

Sackett, C.A. et al. Experimental entanglement of 4 particles. Nature 404, 256-259 (2000).

32

Lin, G.-D. et al. Massive-scale quantum computation in a linear anharmonic ion lure. Europhys. Lett. 86, 60004 (2009).

33

Landsman, Okay.A. et al. Entanglement doorways of two qubits in arbitrarily lengthy chains of trapped ions. Preprint on https://arxiv.org/abs/1905.10421 (2019).

34

Olmschenk, S. et al. Manipulation and detection of a YX + hyperfine qubit trapped. Phys. Rev. A 76, 052314 (2007).

Leave a Reply

Your email address will not be published. Required fields are marked *