Nature News

A extremely inhomogeneous superfluid in an iron-based superconductor

1.

Emery, V.J. and Kivelson, S. A. Significance of part fluctuations in superconductors with low superfluid density. Nature 374, 434-437 (1995).

2

Keimer, B., Kivelson, S.A., Norman R.M., Uchida, S. & Zaanen, J. From quantum matter to excessive temperature superconductivity in copper oxides. Nature 518, 179-186 (2015).

three

Fulde, P. & Ferrell, R. A. Superconductivity in a robust spin change subject. Phys. Rev. 135, A550-A563 (1964).

four

Larkin, A. I. and Ovchinnikov, Y. N. Non-uniform state of superconductors. Sov. Phys. JETP 47, 1136-1146 (1964).

5

Ghosal, A., Randeria, M. and Trivedi, N. Spatial inhomogeneities in disordered superconductors. Phys. Rev. B 63, 020505 (2000).

6

Feigel'Man, M. V. & Ioffe, L. B. Superficial density of a superconducting superconductor close to the superconducting-insulator transition. Phys. Rev. B 92, 100509 (2015).

7.

Bouadim, Ok., Loh, Y., L., Randeria, M. and Trivedi, N. One and two particle vitality variations throughout the superconducting-insulator-induced transition of problems. Nat. Phys. 7, 884-889 (2011).

eight

Wang, F. & Lee, D. The mechanism of electron pairing of iron-based superconductors. Science 332, 200-204 (2011).

9

Božović, I., Wu, J., He, X. & Bollinger, A. T. What is absolutely extraordinary in cuprate superconductors? Physica C 558, 30-37 (2019).

ten.

Ivanchenko, Y. M. and Zil'berman, L. A. The Josephson Impact in Small Tunnel Contacts. Sov. Phys. JETP 28, 1272-1276 (1969).

11

Ingold, G.-L., Grabert, H. & Eberhardt, U. Pair of Cooper pairs by way of ultrasmall Josephson junctions. Phys. Rev. B 50, 395-402 (1994).

12

Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).

13

Hamidian, M.H. et al. Detection of a Cooper pair density wave in Bi2Sr2CaCu2O8 + x. Nature 532, 343-347 (2016).

14

Randeria, M.T., Feldman, B.E., Drozdov, I.Ok. & Yazdani, A. Scan the spectroscopy of Josephson on the atomic scale. Phys. Rev. B 93, 161115 (2016).

15

Graham, M. & Morr, D. Ok. Imaging the spatial form of a superconducting order parameter through Josephson tunneling spectroscopy. Phys. Rev. B 96, 184501 (2017).

16

Yin, Z. P., Haule, Ok. & Kotliar, G. Kinetic frustration and nature of magnetic and paramagnetic states in iron pnictures and iron chalcogenides. Nat. Mater. 10, 932-935 (2011).

17

Hanaguri, T., Niitaka S., Kuroki Ok. and Takagi H., Unconventional superconductivity of the wave s in Fe (Se, Te). Science 328, 474-476 (2010).

18

Miao H. et al. Common 2Δmax / okay
BT
Decoupled C scaling of digital coherence in iron-based superconductors. Phys. Rev. B 98, 020502 (2018).

19

Properties, C.C. et al. FeTe0.55Se0.45: a multiband superconductor within the clear and soiled restrict. Phys. Rev. B 91, 144503 (2015).

20

Bendele, M. et al. Anisotropic superconducting properties of monocrystalline FeSe0.5Te0.5. Phys. Rev. B 81, 224520 (2010).

21

Jäck, B. et al. A nanoscale supply in gigahertz produced with Josephson Tunneling Microscopy. Appl. Phys. Lett. 106, 013109 (2015).

22

Ota, Y. et al. Ambegaokar – Baratoff relations for the Josephson important present in heterojunctions with a number of card superconductors. Phys. Rev. B 81, 214511 (2010).

23

Liu, Z. Ok. et al. Experimental statement of incoherent and coherent cross-over and orbit-dependent renormalization in iron chalcogenide superconductors. Phys. Rev. B 92, 235138 (2015).

24

Singh, U. R. et al. Spatial inhomogeneity of the superconducting interval and the order parameter in FeSe0.4Te0.6. Phys. Rev. B 88, 155124 (2013).

25

Feng, D.L. et al. Signature of superfluid density within the excitation spectrum of a single particle of Bi2Sr2CaCu2O8 + δ. Science 289, 277-281 (2000).

26

Kohsaka, Y. et al. How Cooper pairs disappear with the method of Mott's insulator in Bi2Sr2CaCu2O8 + δ. Nature 454, 1072-1078 (2008).

27

Ruan, W. et al. Visualization of periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178-1182 (2018).

28

Dubi, Y., Meir, Y. and Avishai, Y. Nature of the superconducting-insulator transition in disordered superconductors. Nature 449, 876-880 (2007).

29

Bloch, I., Dalibard, J. & Zwerger, W. A number of physique physics with ultra-cold gases. Rev. Mod. Phys. 80, 885-964 (2008).

30

Randeria, M. & Taylor, E. Crossover of Bardeen – Cooper – Schrieffer condensation at Bose – Einstein and Unit Fermi fuel. Annu. Rev. Condens. Phys. 5, 209-232 (2014).

31.

Bagged bag, B. et al. Location of preformed Cooper pairs in disordered superconductors. Nat. Phys. 80, 239-244 (2011).

32

Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

33

Reyren, N. et al. Superconducting interface between insulating oxides. Science 317, 1196-1199 (2007).

34

Šmakov, J., Martin, I. & Balatsky, A. V. Josephson. Scanning tunnel microscopy. Phys. Rev. B 64, 212506 (2001).

35

Josephson, B. D. New results in superconducting tunnels. Phys. Lett. 1, 251-253 (1962).

36

Tinkham, M. Introduction to superconductivity (McGraw-Hill, 1975).

37

Ambegaokar, V. & Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 10, 486-489 (1963).

38

Tsuei, C.C. & Kirtley, J. R. Pairing symmetry in superconductors in cuprate. Rev. Mod. Phys. 72, 969-1016 (2000).

39

Ng, T. Ok. & Nagaosa, N. Symmetry of time inversion damaged within the Josephson junction involving two-band superconductors. Europhys. Lett. 87, 17003 (2009).

40

Ota, Y., Machida, M., Koyama, T. and Matsumoto, H. Principle of superconducting-insulator-superconducting Josephson junctions between single and a number of area superconductors. Phys. Rev. Lett. 102, 237003 (2009).

41

Seidel, P. Josephson results in iron-based superconductors. Supercond. Sci. Technol. 24, 043001 (2011).

42

Lin, S.-Z. Josephson impact between a symmetric superconductor s ++ or s ± and a classical superconductor wave s. Phys. Rev. B 86, 014510 (2012).

43

Naaman, O. et al. Josephson impact in Pb / I / NbSe2 scanning tunnel microscopic junctions. Int. J. Mod. Phys. B 17, 3569-3574 (2003).

44

Stewart, W. C. Present-voltage traits of Josephson junctions. Appl. Phys. Lett. 12, 277-280 (1968).

45

McCumber, D. E. Impact of AC Impedance on DC Voltage-Present Traits of Low-Hyperlink Superconducting Junctions. J. Appl. Phys. 39, 3113-3118 (1968).

46

Nazarov, Y. V. & Ingold, G.-L. Cost Tunneling Charges in Ultrasmall Capabilities Vol. 294, 21-107 (Springer, 1992).

47

Averin, D.V., Nazarov, Y. V. and Odintsov, A. A. Inconsistent barrel pairing and quanta of magnetic flux in ultra-thin Josephson junctions. Physica B 165-166, 945-946 (1990).

48.

Jäck, B. et al. Josephson's present criticizes within the dynamic regime of the Coulomb blockade. Phys. Rev. B 93, 020504 (2016)

49

Ast, C. R. et al. Detection of the quantum restrict in tunneling spectroscopy. Nat. Frequent. 7, 13009 (2016).

50

Kimura, H., Barber, R. P., Ono, S., Ando, ​​Y. and Dynes, R. C. Phys. Rev. Lett. 101, 037002 (2008).

51.

Kimura, H., Barber, R. P., Ono, S., Ando, ​​Y. & Dynes, R.C. Josephson. Tunnel impact microscopy: a neighborhood and direct probe of the superconducting order parameter. Phys. Rev. B 80, 144506 (2009).

52

Ruby, M., Heinrich, B.W., Pascual, J.I. and Franke, Ok.J. Experimental demonstration of a two-band superconducting state for lead by tunneling spectroscopy. Phys. Rev. Lett. 114, 157001 (2015).

53

Dynes, R.C., Narayanamurti, V. and Garno, J.P. Direct measurement of the broadening of the lifetime of a quasi-particle in a strongly coupled superconductor. Phys. Rev. Lett. 41, 1509-1512 (1978).

54

Anderson, P.W. in Conferences on the issue of a number of our bodies, vol. II (Ed. Caianello E.R.) 113-135 (Tutorial Press, 1964).

55

Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

56.

Zhang, P. et al. Remark of topological superconductivity on the floor of an iron-based superconductor. Science 360, 182-186 (2018).

57

Mazin, I. I. & Singh, D. J. Remark "Unconventional superconductivity in waves s in Fe (Se, Te)". Preprint on https://arxiv.org/abs/1007.0047 (2010).

58

Hanaguri, T., S. Niitaka, Kuroki Ok. and H. Solutions of H. Takagi about "Unconventional superconductivity of the s wave in Fe (Se, Te)". Preprint at https://arxiv.org/abs/1007.0307 (2010).

59

Moreschini, L. et al. Penalties of a damaged translational symmetry in FeSexTe1 – x. Phys. Rev. Lett. 112, 087602 (2014).

Leave a Reply

Your email address will not be published. Required fields are marked *