Nature News

Two-qubit gate between phosphorus-donating electrons in silicon

1.

Kane, B. E. A nuclear spin quantum laptop based mostly on silicon. Nature 393, 133-137 (1998).

2

Muhonen, J. T. et al. Storage of quantum data for 30 seconds in a nanoelectronic system. Nat. Nanotechnol. 9, 986-991 (2014).

three

Muhonen, J. T. et al. Quantify the constancy of the quantum grid of single-atom spin qubits in silicon by random comparative evaluation. J. Phys. Condens. Matter 27, 154205 (2015).

four

Hill, C.D. et al. International management and quick quantum computation of the spin of donor electrons within the strong state. Phys. Rev. B 72, 045350 (2005).

5

Loss, D. & DiVincenzo, D.P. Quantum Computation with Quantum Dots. Phys. Rev. A 57, 120-126 (1998).

6

Veldhorst, M. et al. A logic gate with two qubits in silicon. Nature 526, 410-414 (2015).

7.

Zajac, D.M. et al. CNOT door with resonant management for digital spins. Science 359, 439-442 (2018).

eight

Watson, T.F. et al. A programmable quantum processor with two qubits in silicon. Nature 555, 633-637 (2018).

9

Brunner, R. et al. Two-qubit gate combining a spin rotation and an interdot spin change in a double quantum dot. Phys. Rev. Lett. 107, 146801 (2011).

ten.

Huang, W. et al. Loyalty standards for two-qubit silicon doorways. Nature 569, 532-536 (2019).

11

Meunier, T., Calado, V.E. & Vandersypen, L.M. Ok. Efficient section managed gate for single spin qubits in quantum dots. Phys. Rev. B 83, 121403 (2011).

12

Kalra, R., Laucht, A., Hill, C., D. and Morello, A. Sturdy two-qubit gates for silicon donors managed by hyperfine interactions. Phys. Rev. X four, 021044 (2014).

13

Hile, S.J. et al. Radio frequency reflectometry and cost detection of a donor precisely positioned in silicon. Appl. Phys. Lett. 107, 093504 (2015).

14

Weber, B. et al. Spin blocking and change in silicon double quantum dots confined by Coulomb. Nat. Nanotechnol. 9, 430-435 (2014).

15

Yoneda, J. et al. Qubit of quantum dots with coherence restricted by a load noise and a constancy better than 99.9%. Nat. Nanotechnol. 13, 102-106 (2018).

16

Dial, O.E. et al. Cost noise spectroscopy utilizing coherent change oscillations in a singlet-triplet qubit. Phys. Rev. Lett. 110, 146804 (2013).

17

Nowack, Ok.C. et al. Distinctive correlations and gate to 2 qubits of semiconductor spins. Science 333, 1269-1272 (2011).

18

Broome, M.A. et al. Excessive constancy singlet-triplet playback of a shot of precisely positioned donors within the silicon. Phys. Rev. Lett. 119, 046802 (2017).

19

Broome, M.A. et al. Two-electron spin correlations in precisely positioned donors in silicon. Nat. Widespread. 9, 980 (2018).

20

Hsueh, Y.-L. et al. Spin-lattice leisure time of particular person donors and donor teams in silicon. Phys. Rev. Lett. 113, 246406 (2014).

21

Koiller, B., Hu, X. and Das Sarma, S. Change in a quantum laptop structure on silicon. Phys. Rev. Lett. 88, 027903 (2001).

22

Wang, Y. et al. Extremely configurable change in silicon donor qubits. npj Quantum Inf. 2, 16008 (2016).

23

Wang, Y., Chen, C.-Y., Klimeck, G., Simmons, M.Y. and Rahman, R. Characterizing qubits of Si quantum dots with spin resonance methods. Sci. Rep. 6, 31830 (2016); Corrigendum 6, 38120 (2016).

24

Watson, TF, Weber, B., Home, MG, Buch, H. & Simmons, MY Hello-fidelity quick initialization and studying of an electron spin through state of cost D- to Donor distinctive. Phys. Rev. Lett. 115, 166806 (2015).

25

Watson, T.F. et al. Spin lifespan of 30 s electrons in silicon, designed atomically. Sci. Adv. three, e1602811 (2017).

26

Politi, A., Cryan, M.J., Rarity, J.G., Yu, S. and O'Brien, J.L. Silicon waveguide quantum circuits on silicon. Science 320, 646-649 (2008).

27

Abrosimov, N. V. et al. A brand new technology of 28Si monocrystals enriched to 99.999% for the dedication of the Avogadro fixed. Metrologia 54, 599-609 (2017).

28

Throckmorton, R. E., E. Barnes and E. Das Sarma, S. Results of environmental noise on entanglement constancy of semiconductor qubits coupled with change. Phys. Rev. B 95, 085405 (2017).

29

Martins, F. et al. Noise suppression utilizing symmetric change gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016).

30

Wang, X. et al. Composite pulses for strong common management of singlet to triplet qubits. Nat. Widespread. three, 997 (2012).

31.

Horibe, Ok., Kodera, T. and Oda, S. Counter-action induced electron excitation in a silicon quantum dot with an electron transistor cost sensor. Appl. Phys. Lett. 106, 053119 (2015).

32

Shamim, S., Weber, B., Thompson, D.W., Simmons, M., Y. and Ghosh, A. Atomic scale buildings with very low noise for silicon quantum circuits. Nano Lett. 16, 5779-5784 (2016).

33

Keizer, J.G., S. Koelling, Koenraad, P.M. and Simmons, M.Y. Suppression of segregation in phosphorus-doped silicon monolayers. ACS Nano 9, 12537-12541 (2015).

34

Gorman, S.Ok. et al. Tunneling statistics for the evaluation of spin playback constancy. Phys. Rev. Appl. eight, 034019 (2017).

Leave a Reply

Your email address will not be published. Required fields are marked *