Nature News

Signatures of tunable superconductivity in a brilliant community of graphene Moiré trilayer

1.

Mott, N. F. The premise of the idea of the electron of metals, with explicit reference to transition metals. Proc. Phys. Soc. A 62, 416 (1949).

2

Hubbard, J. Correlations of electrons in slender vitality bands. II. The case of degenerate band. Proc. R. Soc. Lond. A 277, 237-259 (1964).

three

Lee, P., Nagaosa, N. and Wen, X.G. Doping of a Mott insulator: Physics of superconductivity at excessive temperature. Rev. Mod. Phys. 78, 17-85 (2006).

four

Imada, M., Fujimori, A. and Tokura, Y. Steel-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

5

Chen, G. et al. Highlighting a tunable Mott insulator by way of the grid in a three-layered supergrid of graphene moiré. Nat. Phys. 15, 237-241 (2019).

6

Chittari, B.L., Chen, G., Zhang, Y., Wang, F. & Jung, J. Grid-tunable topological flatbands in graphene-boron-nitride three-layer moiré superlattices. Phys. Rev. Lett. 122, 016401 (2019).

7.

Cao, Y. et al. Half-filled correlated insulating habits in magical-angle graphene supergrids. Nature 556, 80-84 (2018).

eight

Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

9

Ju, L. et al. Topological valley transport on the partitions of the bilayer graphene area. Nature 520, 650-655 (2015).

ten.

Wang, L. et al. One-dimensional electrical contact with a two-dimensional materials. Science 342, 614-617 (2013).

11

Chen, G. et al. Emergence of tertiary Dirac factors within the Moire graphene supergrids. Nano Lett. 17, 3576-3581 (2017).

12

He, C.H., Li, Z., Mak, Okay.F., Cappelluti, E. & Heinz, T.F. Commentary of an electrically tunable band hole in three-layered graphene. Nat. Phys. 7, 944-947 (2011).

13

Zou, Okay., Zhang, F., Clapp, C., MacDonald, AH and Zhu, J. Trilayer double-gate graphene transport research ABC and ABA: band hole opening and band construction tuning in very giant fields perpendicular electrical. Nano Lett. 13, 369-373 (2013).

14

Lee, Y. et al. Competitors between spontaneous symmetry breaking and single particle gaps in three layer graphene. Nat. Frequent. 5, 5656 (2014).

15

Zhang, F., Sahu, B., Min., H. and MacDonald, A. H. Construction in strips of graphene trilayers stacked by ABC. Phys. Rev. B 82, 035409 (2010).

16

Koshino, M. & McCann, E. Warp Trigonal and Nπ of Berry part in stacked multilayer graphene ABC. Phys. Rev. B 80, 165409 (2009).

17

Bao, W. et al. Band-based interval and quantum transport depending on stacking in graphene in three layers. Nat. Phys. 7, 948-952 (2011).

18

Zhang, L., Zhang, Y., Camacho, J., Khodas, M. and I. Zaliznyak. Experimental commentary of the quantum Corridor impact of l = three chiral quasiparticles in graphene in three layers. Nat. Phys. 7, 953-957 (2011).

19

Yankowitz, M. et al. Emergence of tremendous lattice Dirac factors in graphene on hexagonal boron nitride. Nat. Phys. eight, 382-386 (2012).

20

Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Corridor impact in moiré super-networks. Nature 497, 598-602 (2013).

21

Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene tremendous networks. Nature 497, 594-597 (2013).

22

Hunt, B. et al. Large fermions of Dirac and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427-1430 (2013).

23

Yang, W. et al. Epitaxial development of single area graphene on hexagonal boron nitride. Nat. Mater. 12, 792-797 (2013).

24

Zhu, G.-Y., Xiang, T. and Zhang, G.-M. Spin-valley antiferromagnetism and topological superconductivity within the graphite trilayer moire superlattice. Pre-print on https://arxiv.org/abs/1806.07535 (2018).

25

Zhang, Y.-H. & Senthil, T. Bridging Physics of Hubbard fashions and Corridor quantum physics in a Graphene / h-BN moiré superlattice. Preprint on https://arxiv.org/abs/1809.05110 (2018).

26

Aslamasov, L.G. & Larkin, A. I. Affect of the pairing of electron fluctuations on the conductivity of the conventional metallic. Phys. Lett. A 26, 238-239 (1968).

27

Yankowitz, M. et al. Adjustment of superconductivity in twisted bilayer graphene. Science 363, 1059-1064 (2019).

28

Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139-143 (2016).

29

Fatemi, V. et al. Low density superconductivity electrically tunable in a monolayer topological isolator. Science 362, 926-929 (2018).

30

Yagi, R. Load imbalance noticed in superconducting tunnel junctions – regular voltage-biased. Phys. Rev. B 73, 134507 (2006).

31.

Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. and Senthil, T. Chern bands virtually flat in moiré super-networks. Phys. Rev. B 99, 075127 (2019).

32

Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018).

33

Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448-453 (2019).

34

Lu, X. et al. Superconductors, orbital magnets, and correlated states in magical angle bilayer graphene. Preprint on https://arxiv.org/abs/1903.06513 (2019)

35

Zibrov, A. et al. Tunable interacting composite fermion part in a semi-filled bilayer-graphene Landau degree. Nature 549, 360-364 (2017).

36

Amet, F. et al. Composite fermions and damaged symmetries in graphene. Nat. Frequent. 6, 5838 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *