Nature News

Large Corridor thermal conductivity within the pseudogap part of cuprate superconductors

1.

Keimer, B. et al. From quantum matter to excessive temperature superconductivity in copper oxides. Nature 518, 179-186 (2015).

2

Proust, C. & Taillefer, L. The outstanding elementary states of superconductors in cuprate. Annu. Rev. Condens. Phys. 10, 409-429 (2019).

three

Ideue, T. et al. Large thermal corridor impact in multiferroic. Nat. Mater. 16, 797-802 (2017).

four

Kasahara, Y. et al. Uncommon thermal Corridor impact in a Kitaev α-RuCl3 spin liquid candidate. Phys. Rev. Lett. 120, 217205 (2018).

5

Watanabe, D. et al. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite. Proc. Natl Acad. Sci. USA 113, 8653-8657 (2016).

6

Doki, H. et al. Spin thermal conductivity within the Corridor of antiferromagnetic Kagome. Phys. Rev. Lett. 121, 097203 (2018).

7.

Lee, H., Han, J.H. and Lee, P. A. Thermal Corridor Impact of Spins in a Paramagnetic. Phys. Rev. B 91, 125413 (2015).

eight

Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity with out phonons. Nature 450, 1177-1183 (2007).

9

Kyung, B. et al. Pseudogap induced by short-range spin correlations in a doped Mott insulator. Phys. Rev. B 73, 165114 (2006).

ten.

Scheurer, M. S. et al. Topological order within the steel of the pseudogap. Proc. Natl Acad. Sci. USA 115, E3665 to E3672 (2018).

11

Nasu, J., Yoshitake, J. and Motome, Y. Thermal transport within the Kitaev mannequin. Phys. Rev. Lett. 119, 127204 (2017).

12

Hirschberger, M. et al. Excessive thermal conductivity of impartial spin excitations in a pissed off quantum magnet. Science 348, 106-109 (2015).

13

Zhang, Y. et al. Large enchancment in Corridor κ thermal conductivity
xy within the superconductor YBa2Cu3O7. Phys. Rev. Lett. 86, 890-893 (2001).

14

Durst, A.C., Vishwanath, A. and Lee, P. A. Low area Corridor thermal conductivity within the combined state of dc superconductors. Phys. Rev. Lett. 90, 187002 (2003).

15

Cvetkovic, V. and Vafek, O. Berry and Corridor's intrinsic thermal results in high-temperature cuprate superconductors. Nat. Frequent. 6, 6518 (2015).

16

Grissonnanche, G. et al. Wiedemann-Franz's regulation within the YBa2Cu3Oy doped cuprate superconductor. Phys. Rev. B 93, 064513 (2016).

17

Collignon, C. et al. Fermi-surface transformation by way of the essential level of pseudogap of the superconductor in cuprate La1.6 – xNd0.4SrxCuO4. Phys. Rev. B 95, 224517 (2017).

18

Kawasaki, S. et al. Service dependence of the bottom state of pseudogabulation of the superconductor Bi2Sr2-xLaxCuO6 revealed by nuclear magnetic resonance 63,65Cu in very excessive magnetic fields. Phys. Rev. Lett. 105, 137002 (2010).

19

Strohm, C., Rikken, G.L.A. & Wyder, P. Phenomenological Proof of the Phonons Corridor Impact. Phys. Rev. Lett. 95, 155901 (2005).

20

Sugii, Ok. et al. Thermal Corridor impact in a Ba3CuSb2O9 spin-phonon glass. Phys. Rev. Lett. 118, 145902 (2017).

21

Nachumi, B. et al. Section – part muon spin leisure examine in La1.6 – xNd0.4SrxCuO4 bands and 214 associated cuprates. Phys. Rev. B 58, 8760-8772 (1998).

22

Katsura, H., Nagaosa, N. and Lee, P. A. Idea of the Corridor warmth impact in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

23

Hentrich, R. et al. Vital thermal Corridor impact in α-RuCl3: proof of warmth transport by Kitaev-Heisenberg paramagnons. Phys. Rev. B 99, 085136 (2019).

24

Kasahara, Y. et al. Majorana quantization and semi-integer thermal quantum Corridor impact in a Kitaev spin liquid. Nature 559, 227-231 (2018).

25

Kivelson, S.A., Rokhsar, D.S. and Sethna, J.P. Topology of the state of resonant valence bonds: solitons and high-T
c superconductivity. Phys. Rev. B 35, 8865 (1987).

26

Varma, C. M. Idea of the state of pseudogap of cuprates. Phys. Rev. B 73, 155113 (2006).

27

Samajdar, R., Chatterjee, S., Sachdev, S. and Scheurer, M. Thermal Corridor Impact in Sq.-lattice spin liquids: A examine of the Schwinger boson center area. Phys. Rev. B 99, 165126 (2019).

28

Onose, Y. et al. Statement of the Corridor Magnon impact. Science 329, 297-299 (2010).

29

Cyr-Choinière, O. et al. T * pseudogap temperature of superconductors in cuprate of the Nernst impact. Phys. Rev. B 97, 064502 (2018).

30

Michon, B. et al. Thermodynamic signatures of quantum criticality in cuprate superconductors. Nature 567, 218-222 (2019).

31.

Klauss, H.-H. et al. From antiferromagnetic order to static magnetic tapes: the part diagram of (La, Eu) 2-xSrxCuO4. Phys. Rev. Lett. 85, 4590-4593 (2000).

32

Hücker, M. et al. Coupling of streaks with lattice distortions in cuprates and nickelates. Physica C 460-462, 170-173 (2007).

33

Ono, S. & Ando, ​​Y. Evolution of resistivity anisotropy in Bi2Sr2 – xLaxCuO6 + δ single crystals for a variety of gap doping. Phys. Rev. B 67, 104512 (2003).

34

Uchida, S. et al. Electrical and magnetic properties of La2CuO4. Jpn. J. Appl. Phys. 26, 4445 (1987).

35

Komiya, S., Ando, ​​Y., Solar, F. X. & Lavrov, A. N. Anisotropy of transport on the c-axis and resistivity of low-doped La2-xSrxCuO4 single crystals: implications on the cost transport mechanism. Phys. Rev. B 65, 214535 (2002).

36

Keimer, B. et al. Habits of sentimental phonons and magnetism on the low temperature structural part transition of La1.65Nd0.35CuO4. Z. Phys. B 91, 373-382 (1993).

37

Hess, C. et al. Magnon warmth transport in doped La2CuO4. Phys. Rev. Lett. 90, 197002 (2003).

38

Lavrov, A., Ando, ​​Y., Komiya, S. and Tsukada, I. Uncommon magnetic susceptibility anisotropy in unconnected La2-xSrxCuO4 single crystals within the calmly doped area. Phys. Rev. Lett. 87, 017007 (2001).

39

Li, Q.J. et al. Phonon conduct of glass of magnetic origin in Tb2Ti2O7 monocrystal. Phys. Rev. B 87, 214408 (2013).

40

Michon, B. et al. Wiedemann-Franz's regulation and abrupt change of conductivity throughout the essential level of pseudogap of a superconductor in cuprate. Phys. Rev. X eight, 041010 (2018).

Leave a Reply

Your email address will not be published. Required fields are marked *