Nature News

Non-photosynthetic predators are sisters of pink algae

1.

Burki, F. The eukaryotic tree of life in a world phylogenomic perspective. Harb Spring Spring. Perspective. Biol. 6, a016147 (2014).

2

Archibald, J. M. The puzzle of the evolution of plastids. Curr. Biol. 19, R81 – R88 (2009).

three

Keeling, P. J. The quantity, velocity and affect of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583-607 (2013).

four

Qiu, H., Worth, D.C., Yang, E.C., Yoon, H.S. and Bhattacharya, D. Proof of discount of the traditional genome within the pink alga (Rhodophyta). J. Phycol. 51, 624-636 (2015).

5

Yoon, H.S. et al. Unicellular genomics reveals interactions between organisms in non-cultured marine protists. Science 332, 714-717 (2011).

6

Salichos, L. & Rokas, A. The inference of previous discrepancies requires genes with sturdy phylogenetic alerts. Nature 497, 327-331 (2013).

7.

Zhang, C., Rabiee, M., Sayyari, E. and Mirarab, S. ASTRAL-III: Species Tree Reconstruction at Polynomial Time from Partially Resolved Gene Bushes. BMC Bioinformatics 19, 153 (2018).

eight

Spiegel, F. W. Considering the primary Plantae. Science 335, 809-810 (2012).

9

Qiu, H., Yoon, H.S. & Bhattacharya, D. The phylogenomics of pink algae gives a strong framework for inferring the evolution of main metabolic pathways. PLoS Curr. eight, https://doi.org/10.1371/currents.tol.7b037376e6d84a1be34af756a4d90846 (2016).

ten.

Pazour, G.J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic evaluation of an eyelash of eukaryotes. J. Cell Biol. 170, 103-113 (2005).

11

Maruyama, S. & Kim, E. A contemporary descendant of phagotrophes of historical inexperienced algae. Curr. Biol. 23, 1081-1084 (2013).

12

Burns, J.A., Pittis, A.A. and Kim, E. Predictive fashions of gene-based trophic modes recommend that Asgard archaea usually are not phagocytic. Nat. College. Evol. 2, 697-704 (2018).

13

Gornik, S.G. et al. Endosymbiosis carried out by progressive elimination of the plastid in a parasitic dinoflagellate. Proc. Natl Acad. Sci. USA 112, 5767-5772 (2015).

14

Xu, P. et al. The genome of Cryptosporidium hominis. Nature 431, 1107-1112 (2004).

15

Gould, S.B., Maier, U.-G. & Martin, W. F. Importation of proteins and origin of pink advanced plastids. Curr. Biol. 25, R515 to R521 (2015).

16

Oborník, M. & Inexperienced, B. R. Mosaic origin of the pathway of heme biosynthesis in photosynthetic eukaryotes. Mol. Biol. Evol. 22, 2343-2353 (2005).

17

Smith, D.R. & Lee, R.W. A plastid with out a genome: proof from the genus Polytomella, a non-photosynthetic inexperienced algae. Plant Physiol. 164, 1812-1819 (2014).

18

Fernández Robledo, J.A. et al. The seek for the lacking hyperlink: a plastidic relic to Perkinsus? Int. J. Parasitol. 41, 1217-1229 (2011).

19

Muñoz-Gómez, S.A. et al. The brand new Proteorhodophytina, a subphylum of pink algae, contains the biggest and most divergent plastid genomes identified. Curr. Biol. 27, 1677-1684 (2017).

20

Lartillot, N., Lepage, T. and Blanquart, S. PhyloBayes three: Bayesian software program for phylogenetic reconstruction and molecular courting. Bioinformatics 25, 2286-22288 (2009).

21

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and environment friendly stochastic algorithm for estimating most probability phylogeny. Mol. Biol. Evol. 32, 268-274 (2015).

22

Tikhonenkov, D.V., Mazeĭ, IuA. & Embulaeva, E. A. [Degradation succession of heterotrophic flagellate communities in microcosms]. Zh. Obshch. Biol. 69, 57-64 (2008).

23

Tikhonenkov, D.V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. Div. not. sp., two new alveolar phyla (Colponemidia nom nov., and Acavomonidia nom nov.) and their contributions to the reconstruction of the ancestral state of alveolates and eukaryotes. PLoS ONE 9, 95467 (2014).

24

Luft, J. H. Enhancements in strategies of epoxy resin integration. J. Biophys. Biochem. Cytol. 9, 409-414 (1961).

25

Picelli, S. et al. Full-length RNA-seq from single cells utilizing Sensible-seq2. Nat. Protocols 9, 171 to 181 (2014).

26

Tikhonenkov, DV, Janouškovec, J., Keeling, PJ and Mylnikov, AP The morphology, ultrastructure and sequence of the rRNA gene of the SSU of a brand new flagellate of freshwater, Neobodo borokensis n . sp. (Kinetoplastea, Excavata). J. Eukaryot. Microbiol. 63, 220-232 (2016).

27

Andrews, S. FastQC: A top quality management device for high-throughput sequence information. model zero.10.1 https://www.bioinformatics.babraham.ac.uk/initiatives/fastqc/ (2010).

28

Bolger, A.M., Lohse, M. and Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114-2120 (2014).

29

Grabherr, M.G. et al. Full meeting of the transcriptome from RNA-seq information with out a reference genome. Nat. Biotechnol. 29, 644-652 (2011).

30

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a brand new technology of analysis packages in protein databases. Nucleic Acids Res. 25, 3389-3402 (1997).

31.

Li, W. & Godzik, A. Cd-hit: a fast program for grouping and evaluating massive units of protein or nucleotide sequences. Bioinformatics 22, 1658-1659 (2006).

32

Simão, FA, Waterhouse, RM, Ioannidis, P., Kriventseva, EV and Zdobnov, EM BUSCO: analysis of completeness of genome meeting and annotations with the assistance of copy orthologues distinctive. Bioinformatics 31, 3210-3212 (2015).

33

Bankevich, A. et al. SPAdes: a brand new algorithm for genome meeting and its functions to single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).

34

Miller, I.J. et al. Autometa: automated extraction of microbial genomes from particular person metagenomes of shotguns. Nucleic Acids Res. 47, 57 (2019).

35

Gurevich, A., V. Saveliev, Vyahhi, N. and Tesler, G. QUAST: device for evaluating the standard of genome assemblages. Bioinformatics 29, 1072-1075 (2013).

36

Wu, T. D. & Watanabe, C. Okay. GMAP: A genomic mapping and alignment program for the mRNA and EST sequences. Bioinformatics 21, 1859-1875 (2005).

37

Crooks, G. E., Hon. G., Chandonia, J.-M. & Brenner, S. WebLogo: a sequence emblem generator. Genome Res. 14, 1188-1190 (2004).

38

Ryan, J. F. Baa.pl: a device to judge de novo genome assemblies with RNA transcripts. Preprint on https://arxiv.org/abs/1309.2087 (2013).

39

Gruber-Vodicka, H.R., Seah, B.Okay.B. & Pruesse, E.PhyloFlash – quick profiling of SSU RNAs and focused meeting from metagenomes. Pre-print at https://www.biorxiv.org/content material/10.1101/521922v1 (2019).

40

Burki, F. et al. Unraveling the early diversification of eukaryotes: a phylogenomic research of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. R. Soc. B 283, 20152802 (2016).

41

Katoh, Okay. & Standley, D. M. MAFFT software program for A number of Sequence Sequence 7: Improved efficiency and usefulness. Mol. Biol. Evol. 30, 772-780 (2013).

42

Criscuolo, A. & Gribaldo, S. BMGE (block mapping and entropy assortment): new software program for choosing phylogenetic informative areas from a number of sequence alignments. BMC Evol. Biol. 10, 210 (2010).

43

Stamatakis, A. RAxML model eight: a device for phylogenetic evaluation and post-analysis of enormous phylogenies. Bioinformatics 30, 1312-1313 (2014).

44

Roure, B., Rodriguez-Ezpeleta, N. & Philippe, H. SCaFoS: a device for choice, concatenation and sequence fusion for phylogenomics. BMC Evol. Biol. 7 (Suppl 1), S2 (2007).

45

Maddison, W. P. and Maddison, D. R. Mesquite: a modular system for evolutionary evaluation. Model three.5 https://www.mesquiteproject.org/ (2018).

46

Emanuelsson, O., Nielsen, H., Brunak, S. and Heijne, G. Prediction of the subcellular localization of proteins primarily based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016 (2000).

47

Capella-Gutiérrez, S., Silla-Martínez, J.M. and Gabaldón, T. trimAl: a device for the automated correction of alignment in large-scale phylogenetic analyzes. Bioinformatics 25, 1972-1973 (2009).

48.

Worth, M.N., Dehal, P.S. & Arkin, A.F. FastTree: calculating massive timber of minimal evolution with profiles as a substitute of a distance matrix. Mol. Biol. Evol. 26, 1641-1650 (2009).

49

Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detection of non-homologous characters in units of non-aligned homologous sequences. Bioinformatics 34, 3929-3930 (2018).

50

Katoh, Okay. & Standley, D.M. A easy methodology to regulate over-alignment within the MAFFT a number of sequence alignment program. Bioinformatics 32, 1933-1942 (2016).

51.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.Okay.F., von Haeseler, A. and Jermiin, L. S. ModelFinder: Speedy choice of fashions for correct phylogenetic estimates. Nat. Strategies 14, 587-589 (2017).

52

Hoang, D.T .; Chernomor, O., von Haeseler, A., Minh, B.Q. and Vinh, L.S. UFBoot2: Enchancment of the super-fast bootstrap approximation. Mol. Biol. Evol. 35, 518-522 (2018).

53

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, C., and Kanehisa, M. KAAS: an computerized genome annotation and path reconstruction server. Nucleic Acids Res. 35, W182 to W185 (2007).

54

Emms, D. M. and Kelly, S. OrthoFinder: The decision of basic biases in complete genome comparisons considerably improves the accuracy of orthogroup inference. Genome Biol. 16,157 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *