Nature News

Visualization of electrostatic tripping results in two-dimensional heterostructures

1.

Dudin, P. et al. Angle-resolved photoemission spectroscopy and imaging with a submicron probe on the three.2-micron Spectromicroscopy line at Elettra. J. Synchrotron Radiat. 17, 445-450 (2010).

2

Rotenberg, E. & Bostwick, A. MicroARPES and nanoARPES for diffraction-limited mild sources: alternatives and efficiency beneficial properties. J. Synchrotron Radiat. 21, 1048-1056 (2014).

three

Iwasawa, H. et al. Double buried CuO chains in YBa2Cu4O8 not lined by nano-ARPES. J. Phys. Condens. Materials four, 9015-9022 (2019).

four

Novoselov, Okay. S., A. Mishchenko, A. Carvalho, A. & Castro Neto, A. H. 2D Supplies and Van der Waals Heterostructures. Science 353, aac9439 (2016).

5

Tong, Q. et al. Topological mosaics within the van der Waals mordant super-lattices. Nat. Phys. 13, 356-362 (2017).

6

Bostwick, A., Ohta, T., Seyller, T., Horn, Okay. and Rotenberg, E. Dynamics of quasiparticles in graphene. Nat. Phys. three, 36-40 (2007).

7.

Riley, J. M. et al. Adverse electron compressibility and tunable spin splitting in WSe2. Nat. Nanotechnol. 10, 1043-1047 (2015).

eight

Zhang, Y. et al. Digital construction, floor doping and optical response in WSe2 epitaxial skinny movies. Nano Lett. 16, 2485 to 2491 (2016).

9

Kim, J. et al. Commentary of the tunable band hole and semi-metallic state of Dirac anisotropic in black phosphorus. Science 349, 723-726 (2015).

ten.

Tang, S. et al. Quantum spin state Corridor within the monolayer 1T'-WTe2. Nat. Phys. 13, 683-687 (2017).

11

Koch, R.J. et al. Nano focusing of soppy X-rays by a brand new capillary mirror optics. Synchrotron radiator. Information 31, 50-52 (2018).

12

Zhang, H. et al. Decision of deep quantum effectively states in atomically skinny 2H-MoTe2 flakes by nanospot-resolved photoemission spectroscopy. Nano Lett. 18, 4664-4668 (2018).

13

Katoch, J. et al. Spin-split and renormalization of big deviations pushed by trions in single-layer WS2 / h-BN heterostructures. Nat. Phys. 14, 355-359 (2018).

14

Cucchi, I. et al. Photoemission resolved in laser angle Microfocus on 1T'-WTe2 encapsulated, mono and bi-layer. Nano Lett. 19, 554-560 (2019).

15

Wilson, N.R. et al. Willpower of band offsets, hybridization and exciton binding in 2D semiconductor heterostructures. Sci. Adv. three, e1601832 (2017).

16

Jin, W. et al. Adjustment of the electron construction of graphene / MoS2 monolayer heterostructures of der Waals by interlayer torsion. Phys. Rev. B 92, 201409 (2015).

17

Pierucci, D. et al. Alignment of bands and minigaps in MoS2-graphene monolithic heterostructures of der Waals. Nano Lett. 16, 4054-4061 (2016).

18

Liu, Y. et al. Heterostructures and Van der Waals gadgets. Nat. Rev. Mater. 1, 16042 (2016).

19

Schaibley, J.R. et al. Valleytronics in 2D supplies. Nat. Rev. Mater. 1, 16055 (2016).

20

Yankowitz, M., McKenzie, D. and LeRoy, B. J. Native spectroscopic characterization of spin and layer polarization in WSe2. Phys. Rev. Lett. 115, 136803 (2015).

21

Zhang, C. et al. Evaluation of important level energies of transition steel dichalcogenides: a stunning oblique hole of the only layer WSe2. Nano Lett. 15, 6494-6500 (2015).

22

He, Okay. et al. Excitons carefully associated within the WSe2 monolayer. Phys. Rev. Lett. 113, 026803 (2014).

23

Park, S. et al. Direct willpower of binding energies of MoS2 and WSe2 monolayer excitons on insulating and metallic substrates. 2D materials. 025003 (2018).

24

Stier, A.V. et al. Magnetooptical states of Rydberg excitation in a single-layer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

25

Zhao, W., Ribeiro, R.M. & Eda, G. Digital construction and optical signatures of semiconductor transition steel dichalcogenide nanowires. Acc. Chem. Res. 48, 91-99 (2015).

26

Mayorov, A. S. et al. Ballistic transport on the micrometric scale in graphene encapsulated at room temperature. Nano Lett. 11, 2396-2399 (2011).

27

Liu, G., Xiao, D., Yao, Y., Xu, X. and Yao, W. Digital constructions and theoretical modeling of Group VIB two-dimensional transition steel dichalcogenides. Chem. Soc. 44, 2643-2663 (2015).

28

Ugeda, M. M. et al. Renormalization of the band hole and excitonic results in a monolayer transition steel dichalcogenide semiconductor. Nat. Mater. 13, 1091-1095 (2014).

29

Gao, S., Liang, Y., Spataru, C.D. & Yang, L. Dynamic excitonic results in doped two-dimensional semiconductors. Nano Lett. 16, 5568-5573 (2016).

30

Raja, A. et al. Coulomb engineering of band hole and excitons in two-dimensional supplies. Nat. Frequent. eight, 15251 (2017).

31.

Gao, S. & Yang, L. Renormalization of the forbidden band of quasi-particles in two-dimensional supplies doped from multi-body computations. Phys. Rev. B 96, 155410 (2017).

32

Cao, Y. et al. Magic Angle Graphene Tremendous Arrays: A New Platform for Unconventional Superconductivity Nature 556, 43-50 (2018).

33

Wang, H., Fan, F., Zhu, S. and Wu, H. The doping enhanced the ferromagnetism and semi-metallicity induced within the CrI3 monolayer. EPL 114, 47001 (2016).

34

Zomer, P.J., Guimarães, M.H.D., Brant, J.C., Tombros, N. and Van Wees, B.J. Appl. Phys. Lett. 105, 013101 (2014).

35

Fang, T., Konar, A., Xing, H. and Jena, D. Provider statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 092109 (2007).

36

Yu, G. L. et al. Interplay phenomena in graphene seen via quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282-3286 (2013).

37

Dean, C. R. et al. Boron nitride substrates for top of the range graphene electronics. Nat. Nanotechnol. 5, 722-726 (2010).

38

Kim, Okay. Okay. et al. Synthesis and characterization of a hexagonal boron nitride movie as a dielectric layer for graphene gadgets. ACS Nano 6, 8583-8590 (2012).

39

Mucha-Kruczyński, M. et al. Characterization of graphene by the anisotropy of fixed power maps in resolute photoemission. Phys. Rev. B 77, 195403 (2008).

40

Kormányos, A. et al. okay · p idea for two-dimensional semiconductors primarily based on transition steel dichalcogenides. 2D materials. 2, 022001 (2015).

41

Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program venture for the quantum simulation of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

42

Hamann, D. R. Vanderbilt's pseudopotentials optimized, assembly requirements. Phys. Rev. B 88, 085117 (2013).

43

van Setten, M.J. et al. PSEUDODOJO: coaching and classification of a pseudopotential chart retaining the norm and optimized for 85 components. Comput. Phys. Frequent. 226, 39-54 (2018).

44

Marini, A., Hogan, C., Grüning, M. and Varsano, D. yambo: an ab initio software for calculating the excited state. Comput. Phys. Frequent. 180, 1392-1403 (2009).

45

Godby, R. W. & Wants, R. J. Steel-insulator transition in Kohn-Sham idea and quasi-particle idea. Phys. Rev. Lett. 62, 1169-1172 (1989).

46

Castro, A., Räsänen, E. and Rozzi, C. A. Actual Coulomb Slicing Approach for Two-dimensional Supercell Calculations. Phys. Rev. B 80, 033102 (2009).

Leave a Reply

Your email address will not be published. Required fields are marked *