Nature News

Rotation monitoring of genome processing enzymes utilizing DNA origami rotors

1.

Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338-341 (2003).

2

Gore, J. et al. Mechanochemical evaluation of DNA gyrase by monitoring the rotor beads. Nature 439, 100-104 (2006).

three

Lebel, P., Basu, A., Oberstrass, F.C., Tretter, E.M. and Bryant, Z. Gold. Monitoring of the rotor balls for high-speed measurements of twisting, torque and DNA extension. Nat. Strategies 11, 456-462 (2014).

four

C. Deufel, S. Forth, C. Simmons, S. Dejgosha, and S. Wang. Nanofabricated quartz cylinders for angular trapping: detection of DNA over-winding torque. Nat. Strategies four, 223-225 (2007).

5

Lipfert, J., M. van Oene, M. Lee, M. Pedaci, F. and Dekker, N. H. Spectroscopy by couple for the research of rotational movement in organic methods. Chem. Rev. 115, 1449-1474 (2015).

6

Harada, Y. et al. Direct remark of the rotation of DNA throughout transcription by Escherichia coli RNA polymerase. Nature 409, 113-115 (2001).

7.

Liu, S. et al. A viral packaging engine varies the rotation of its DNA and its step dimension to protect the coordination of the subunits in the course of the filling of the capsid. Cell 157, 702-713 (2014).

eight

Lipfert, J., Wiggin, M., Kerssemakers, J.W.J., Pedaci, F. & Dekker, N. H. Magnetic tweezers in open orbit to immediately monitor modifications in nucleic acid torsion. Nat. Frequent. 2, 439 (2011).

9

Dillingham, M.S. & Kowalczykowski, S.C. RecBCD enzyme and restore breaks of double-stranded DNA. Microbiol. Mol. Biol. Rev. 72, 642-671 (2008).

ten.

Rothemund, P. W. Ok. Fold DNA again to create shapes and patterns on the nanoscale. Nature 440, 297-302 (2006).

11

Douglas, S. M. et al. Self-assembly of DNA in three-dimensional varieties on the nanoscale. Nature 459, 414-418 (2009).

12

Nomidis, S.Ok., Kriegel, F., W. Vanderlinden, J. Lipfert and E. Carlon, E. Coupling by torsion and curvature and the torsional response of double-stranded DNA. Phys. Rev. Lett. 118, 217801 (2017).

13

Roman, L.J. and Kowalczykowski, S.C. Characterization of helicase exercise of the Escherichia coli RecBCD enzyme with the help of a brand new helicase assay. Biochemistry 28, 2863-2873 (1989).

14

Bianco, P.R. et al. Processive translocation and unwinding of DNA by particular person RecBCD enzyme molecules. Nature 409, 374-378 (2001).

15

Dohoney, Ok.M. & Gelles, J. Sequence recognition and translocation of DNA by RecBCD distinctive helicase / nuclease molecules. Nature 409, 370-374 (2001).

16

Perkins, T.T., Li, H.-W., Dalal, R.V., Gelles, J. and Block, S.M. Backwards and forwards movement of distinctive RecBCD molecules on DNA. Biophys. J. 86, 1640-1648 (2004).

17

Liu, B., Baskin, R.J. and Kowalczykowski, S.C. The heterogeneity of unwinding of DNA by RecBCD outcomes from static molecules able to balancing. Nature 500, 482-485 (2013).

18

Saikrishnan, Ok., Griffiths, SP, Prepare dinner, N., Quick, R. and Wigley, DB, DNA binding to RecD: Function of Area 1B within the exercise of SF1B helicase . EMBO J. 27, 2222-22229 (2008).

19

Farah, J.A. & Smith, G.R. The RecBCD enzyme initiation complicated for the unfolding of DNA: enzyme positioning and opening of the DNA. J. Mol. Biol. 272, 699-715 (1997).

20

von Hippel, P.H., N.P. and Marcus, A.H Fifty years of DNA "respiration": reflections on previous and new approaches. Biopolymers 99, 923-954 (2013).

21

Wu, C.G. & Lohman, T.M. Affect of the construction of the tip of the DNA on the mechanism of initiation of the unfolding of DNA by Escherichia coli RecBCD and RecBC helicases. J. Mol. Biol. 382, 312-326 (2008).

22

Carter, A. R. et al. Conformational dynamics on the nanoscale depending on the sequence of particular person RecBCD – DNA complexes. Nucleic Acids Res. 44, 5849-5860 (2016).

23

Dillingham, M.S., Webb, M.R. & Kowalczykowski, S.C. Bipolar DNA translocation contributes to the unfolding of extremely processable DNA by the RecBCD enzyme. J. Biol. Chem. 280, 37069-37077 (2005).

24

Forde, NR, Izhaky D., Woodcock, GR, Wuite, GJL and Bustamante, C. Use of mechanical pressure to probe the pause and cease mechanism throughout steady elongation by l 39; Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682-11687 (2002).

25

Adelman, Ok. et al. The evaluation of a single molecule of RNA polymerase prolongation reveals a uniform kinetic habits. Proc. Natl Acad. Sci. USA 99, 13538-13543 (2002).

26

Neuman, Ok.C., Abbondanzieri, E.A., Landick, R., Gelles, J. & Block, S.M. The break in transcription is unbiased of the backtracking of RNA polymerase. Cell 115, 437-447 (2003).

27

Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. and Block, S.M. Direct remark of base pair development by RNA polymerase. Nature 438, 460-465 (2005).

28

Righini, M. et al. Full molecular pathways of single-base-pair RNA polymerase. Proc. Natl Acad. Sci. USA 115, 1286-1291 (2018).

29

Kabsch, W., Sander, C. and Trifonov, E. N. The ten helical twist angles of DNA-B. Nucleic Acids Res. 10, 1097-1104 (1982).

30

Kopperger, E. et al. Self-assembled robotic arm on the nanoscale managed by electrical fields. Science 359, 296-301 (2018).

Leave a Reply

Your email address will not be published. Required fields are marked *