Nature News

Holistic prediction of enantioselectivity in uneven catalysis


Houk, Okay. N. & Cheong, P. H.-Y. Pc prediction of small molecule catalysts. Nature 455, 309-313 (2008).


Davis, H.J. & Phipps, R. J. Exploit non-covalent interactions to regulate regioselectivity and web site selectivity in catalytic reactions. Chem. Sci. eight, 864-777 (2017).


Knowles, R. R. & Jacobsen, E. N. Noncovalent Enticing Interactions in Uneven Catalysis: Hyperlinks between Enzymes and Small Molecule Catalysts. Proc. Natl Acad. Sci. USA 107, 20678-20685 (2010).


Sigman, M.S., Harper, Okay.C., Bess, E.N. & Milo, A. Improvement of multidimensional evaluation instruments for uneven catalysis and past. Acc. Chem. Res. 49, 1292-1301 (2016).


Ahneman, D.T., Estrada, J.G., Lin, S., Dreher, S.D. and Doyle, A.G. Predict the efficiency of the response in C-N cross coupling utilizing automated studying. Science 360, 186-190 (2018).


Chuang, Okay.V. & Keizer, M.J. Touch upon "Prediction of response efficiency in C-N cross-coupling utilizing automated studying". Science 362, eaat8603 (2018).


Estrada, J.G., Ahneman, D.T., Sheridan, R.P., Dreher, S.D. and Doyle, A.G. Response to "Touch upon" Prediction of response efficiency in C-N coupling utilizing machine studying ". Science 362, eaat8763 (2018).


Robbins, D. W. & Hartwig, J. F. A easy and multidimensional strategy to excessive throughput discovery of catalytic reactions. Science 333, 1423-1427 (2011).


McNally, A., Prier, C.Okay. & MacMillan, D.WC. Discovery of an arylation response of alpha-C-H utilizing the accelerated serendipity technique. Science 334, 1114-1117 (2011).


Neel, A., J., Milo, A., Sigman, MS and Toste, F., D. Enantiodivergent fluoridation of allyl alcohols: the design of the dataset reveals a structural interplay between the group achiral director and chiral anion. Jam. Chem. Soc. 138, 3863-3875 (2016).


Walsh, P. J. & Kozlowski, M. C. Fundamentals of Uneven Catalysis (College Science Books, 2008).


Yoon, T. P. and Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691-1693 (2003).


Yamamoto, H. Lewis, Acids in Natural Synthesis (Wiley, 2000).


Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744-5758 (2007).


Collins, Okay. D. & Glorius, F. The Screening of Intermolecular Reactions as a Software for Evaluating Reactions. Acc. Chem. Res. 48, 619-627 (2015).


Gesmundo, N.J. et al. Synthesis on the nanoscale and affinity rating. Nature 557, 228-232 (2018).


Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific supply of catalysts for uneven reactions. Angew. Chem. Int. Ed. 50, 138-174 (2011).


Hansen, E., Rosales, A., Tutkowski, B., Norrby, P.-O. & Wiest, O. Prediction of stereochemistry utilizing Q2MM. Acc. Chem. Res. 49, 996-1005 (2016).


Metsänen, T.T. et al. Mixture of conventional 2D descriptors and fashionable natural bodily derivatives to foretell elevated enantioselectivity for the important thing addition of the aza-Michael conjugate within the synthesis of PrevymisTM (letermovir). Chem. Sci. 9, 6922-6927 (2018).


Robak, M.T., Herbage, M.A. and Ellman, J.A. Synthesis and purposes of tert-butanesulfinamide. Chem. Rev. 110, 3600-3740 (2010).


Kobayashi, S., Mori, Y., Fossey, J.S. and Salter, M.M. Catalytic enantioselective formation of C – C bonds by addition to imines and hydrazones: decadal replace. Chem. Rev. 111, 2626-2704 (2011).


Nugent, T. Chiral Amine synthesis: strategies, developments and purposes (Wiley, 2010).


Silverio, D.L. et al. Easy natural molecules as catalysts for the enantioselective synthesis of amines and alcohols. Nature 494, 216-221 (2013).


Parmar, D., Sugiono, E., Raja, S. and Rueping, M. Full Area Information on Uneven Catalysis of Brønsted Acid Derived from BINOL Phosphate and Its Metals: Historical past and Classification by Mode d & # 39; activation; Brønsted acidity, hydrogen bonding, ionic pairing and steel phosphates. Chem. Rev. 114, 9047-9153 (2014).


Simón, L. & Goodman, J. M. Theoretical examine of the mechanism of the hydrogenation of Hantzsch esters by imines catalyzed by chiral BINOL-phosphoric acids. Jam. Chem. Soc. 130, 8741-8747 (2008).


Reid, J. P., Simón, L. and Goodman, J. M. Sensible information for the prediction of stereochemistry of imine reactions catalyzed by bifunctional phosphoric acid. Acc. Chem. Res. 49,1029 (2016).


Santiago, C.B., Guo, J.-Y. & Sigman, M. S. Predictive and mechanistic multivariate linear regression fashions for the event of reactions. Chem. Sci. 9, 2398-2242 (2018).


Reid, J. P. and Sigman, M. S. Comparability of Quantitative Prediction Strategies for the Discovery of Chiral Small Molecular Catalysts. Nat. Rev. Chem. 2, 290-305 (2018).


Denmark, S.E., Gould, N.D. & Wolf, L. M. Systematic examine of quaternary ammonium ions as uneven part switch catalysts. Utility of quantitative relations exercise / selectivity of the construction. J. Org. Chem. 76, 4337-4357 (2011).


Hansch, C. and Leo, A. Exploring QSAR: Primary Rules and Purposes in Chemistry and Biology (ACS, 1995).


Reid, J. P. and Goodman, J. M. Goldilocks Catalysts: laptop data on the position of three,three 'substituents on the selectivity of phosphoric acid catalysts derived from BINOL. Jam. Chem. Soc. 138, 7910-7917 (2016).


Terada, M., Machioka, Okay. and Sorimachi, Okay. Excessive catalyst / substrate organocatalysis by a chiral Brønsted acid for an enantioselective sort response of aza-ene sort. Angew. Chem. Int. Ed. 45, 2254-2257 (2006).


Chen, M.-W. et al. Uneven organocatalytic discount of fluorinated alkynylketimines. J. Org. Chem. 83, 8688-8694 (2018).


Zahrt, A.F. et al. Prediction of upper selectivity catalysts by automated workflow and studying. Science 363, Aau 5631 (2019).

Leave a Reply

Your email address will not be published. Required fields are marked *