Nature News

Neuronal signatures of sleep in zebrafish


Campbell, S. S. & Tobler, I. Animal Sleep: An Examination of Sleep Period Throughout Phylogeny. Neurosci. Biobehav. Rev. Eight, 269-300 (1984).


Leung, L.C. and Mourrain, P. Sleep: Individuals who sleep quick should depend their hypocretinic neurons. Curr. Biol. 28, R558 to R560 (2018).


Pieron, H. The Physiological Drawback on Sleep (Masson, 1913).


Shein-Idelson, M., Ondracek, J.M., Liaw, H.P., Reiter, S. and Laurent, G. Sluggish waves, sharp waves, ripples and REM in sleeping dragons. Science 352, 590-595 (2016).


Prober, D.A. et al. The overexpression of hypocretin / orexine induces the same insomnia-like phenotype in zebrafish. J. Neurosci. 26, 13400-13410 (2006).


Yokogawa, T. et al. Characterization of sleep in zebrafish and insomnia in mutants of the hypocretin receptor. PLoS Biol. 5, e277 (2007).


Zhdanova, I. V. Sleep within the zebrafish. Zebrafish three, 215-226 (2006).


Aho, V. et al. Homeostatic response to sleep deprivation and relaxation via fixed water stream in larval zebrafish beneath circumstances of darkness and luminosity. J. Sleep Res. 26, 394-400 (2017).


Appelbaum, L. et al. Sleep-wake regulation and hypocretin-melatonin interplay in zebrafish. Proc. Natl Acad. Sci. USA 106, 21942-21947 (2009).


Mueller, T., Dong, Z., Berberoglu, M.A. and Guo, S. Dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Mind Res. 1381, 95-105 (2011).


Berman, JR, Skariah, G., Maro, GS, Mignot, E. & Mourrain, P. The characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological hyperlinks with the MCH system of mammals. J. Comp. Neurol. 517, 695-710 (2009).


Chen, T. W. et al. Extremely-sensitive fluorescent protein for the imaging of neuronal exercise. Nature 499, 295-300 (2013).


Madelaine, R. et al. MicroRNA-9 combines cerebral neurogenesis and angiogenesis. Cell Reviews 20, 1533-1542 (2017).


Chauvette, S., Crochet, S., Volgushev, M. and Timofeev, I. Properties of sluggish oscillation throughout sluggish wave sleep and anesthesia in cats. J. Neurosci. 31, 14998-15008 (2011).


Borbély, A. A. A two-process mannequin of sleep regulation. Hum. Neurobiol. 1, 195-204 (1982).


Borbély, A., Daan, Wirz-Justice, A. and Deboer, T. The mannequin of sleep regulation in two processes: a reassessment. J. Sleep Res. 25.131 to 143 (2016).


Ikeda-Sagara, M. et al. Induction of extended sluggish and steady sleep by blocking the H1 histamine mind receptors within the rat. French. J. Pharmacol. 165, 167-182 (2012).


Marzanatti, M., Monopoli, A., Trampus, M. and Ongini, E. Results of non-successive antagonists of histamine H1 on the exercise and habits of EEG in cats. Pharmacol. Biochem. Habits 32, 861-866 (1989).


Saitou, Ok., Kaneko, Y., Sugimoto, Y., Chen, Z. and Kamei, C. Sluggish-wave sleep inducing results of first-generation H1 antagonists. Biol. Pharm. Taurus. 22, 1079-1082 (1999).


Niethard, N. et al. Particular regulation on the sleep stage of cortical excitation and inhibition. Curr. Biol. 26, 2739-2749 (2016).


Dissel, S. et al. Sleep restores the behavioral plasticity of Drosophila mutants. Curr. Biol. 25, 1270-1281 (2015).


Che Has, A. T. et al. Zolpidem is a robust selective modulator of the stoichiometry of α1β3 GABAA receptors: demonstration of a brand new benzodiazepine web site within the α1 – α1 interface. Sci. Rep. 6, 28674 (2016).


Sitaram, N., R. Wyatt, S. Dawson and J. Gillin. Induction of paradoxical sleep by infusion of physostigmine throughout sleep. Science 191, 1281-1283 (1976).


Callaway, C.W., Lydic, R., Baghdoyan, H.A. & Hobson, J. A. Bridgeogeniculococcal waves: spontaneous visible exercise of the system throughout fast eye motion sleep. Cell. Mol. Neurobiol. 7, 105-149 (1987).


Datta, S. Mobile foundation of the era and modulation of ponto-geniculo-occipital waves. Cell. Mol. Neurobiol. 17, 341-365 (1997).


Baghdoyan, H.A., Lydic, R., Callaway, C.W. and Hobson, J.A. The advance of carbachol-induced desynchronized sleep indicators is dose-dependent and antagonized by centrally administered atropine. Neuropsychopharmacology 2, 67-79 (1989).


Coleman, C.G., Lydic, R. & Baghdoyan, H.A. M2, muscarinic receptors within the C57BL / 6J mouse pontine reticular formation contribute to fast eye motion sleep era. Neuroscience 126, 821-830 (2004).


Datta, S., Quattrochi, J.J. & Hobson, J.A. Impact of a particular muscarinic M2 receptor antagonist on long-term paradoxical sleep induced by carbachol. Sleep 16, Eight-14 (1993).


Árnason, B.B., steorsteinsson, H. & Karlsson, Ok.A. E. No fast eye actions throughout sleep in grownup zebrafish. Habits Mind Res. 291, 189-194 (2015).


Roessmann, U., Velasco, M.E., Sindely, S.D. and Gambetti, Glial Fibrillar Acid Protein (GFAP) in ependymal cells throughout growth. An immunocytochemical examine. Mind Res. 200, 13-21 (1980).


Conductier, G. et al. Management of ventricular ciliary beat by the neurons of the lateral hypothalamus expressing the melanin – concentrating hormone: practical imaging examine. Entrance. Endocrinol.
four, 182 (2013).


Dale, N. Purinergic signaling in hypothalamic tanycytes: potential roles in chemosensitivity. Semin. Cell Dev. Biol. 22, 237-244 (2011).


Rizzoti, Ok. & Lovell-Badge, R. Pivotal function of median tanycyte eminences for hypothalamic perform and neurogenesis. Mol. Cell. Endocrinol. 445, 7-13 (2017).


C. Peyron, E. Sapin, L. Leger, P.H. H. and Fort, P. Function of neuropeptide, hormone concentrating melanin, within the regulation of sleep. Peptides 30, 2052-2059 (2009).


Logan, D.W., Burn, S.F. and Jackson, I. J. Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res. 19, 206-213 (2006).


Torterolo, P., Lagos, P., Sampogna, S. & Chase, MH Immunoreactivity of the melanin focus hormone (MCH) in non-neuronal cells within the raphe nuclei and the subventricular area of the trunk cerebral cat. Mind Res. 1210, 163-178 (2008).


Conductier, G. et al. The melanin-concentration hormone regulates the frequency of ependymal eyelash beats and ventricular quantity. Nat. Neurosci. 16, 845-847 (2013).


Hassani, O.Ok., Lee, M. and Jones, B. E. Melanin-concentrating hormone neurons reciprocally discharge to orexin neurons all through the sleep-wake cycle. Proc. Natl Acad. Sci. USA 106, 2418-2422 (2009).


Jego, S. et al. Optogenetic identification of a sleep modulator circuit with fast eye actions within the hypothalamus. Nat. Neurosci. 16, 1637-1643 (2013).


Kawauchi, H., I. Kawazoe, M. Tsubokawa, M. Kishida, M. and Baker, B. I. Characterization of the melanin-concentrating hormone within the pituitary gland of chum salmon. Nature 305, 321-323 (1983).


Kwan, Ok. M. et al. The Tol2kit: a gateway-based multisite building package for Tol2 transposon constructs. Dev. Dyn. 236, 3088-3099 (2007).


Hieber, V., Dai, X., Foreman, M. & Goldman, D. Induction of α-tubulin gene expression throughout growth and regeneration of the fish's central nervous system. J. Neurobiol. 37, 429-440 (1998).


Muto, A., Ohkura, M., Abe, G., Nakai, J. and Kawakami, Ok. Actual-time visualization of neuronal exercise throughout notion. Curr. Biol. 23, 307-311 (2013).


Bernardos, R. L. and Raymond, P. A. GFAP transgenic zebrafish. Gene Expr. Patterns 6, 1007-1013 (2006).


Tabor, Ok. M. et al. Direct activation of the Mauthner cell by electrical area pulses leads to ultra-fast escape responses. J. Neurophysiol. 112, 834-844 (2014).


Appelbaum, L. et al. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretinic neurons. Neuron 68, 87-98 (2010).


Renier, C. et al. Genomic and practical conservation of sedative-hypnotic targets in zebrafish. Pharmacogenet. Genomics 17, 237-253 (2007).


Rihel, J. et al. The behavioral profile of zebrafish hyperlinks medication to organic targets and relaxation / sleep regulation. Science 327, 348-351 (2010).


Pitrone, P.G. et al. OpenSPIM: an open entry gentle plate microscopy platform. Nat. Strategies 10, 598-599 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *