Nature News

Management of protein meeting on inorganic crystals through designed protein interfaces

1.

Sodek, J., Ganss, B. and McKee, M. D. Osteopontin. Crit. Rev. Oral Biol. Med. 11, 279-303 (2000).

2

Addadi, L., Joester, D., Nudelman, F. & Weiner, S. The formation of S. Mollusk shells: a supply of latest ideas for the understanding of biomineralization processes. Chemistry 12, 980-987 (2006).

three

Shaw, W. J. Strong-state NMR research of immobilized proteins on inorganic surfaces. Strong State Nucl. Magn. Reson. 70, 1-14 (2015).

four

Staniland, S.S. & Rawlings, A. E. Crystallizing the operate of the membrane mineralization protein of MMS6 magnetosomes. Biochem. Soc. Trans. 44, 883-890 (2016).

5

Fukushima, T. et al. Molecular foundation of the binding of an electron switch protein to a steel oxide floor. Jam. Chem. Soc. 139, 12647-12654 (2017).

6

Davies, P. L. Ice binding proteins: exceptional range of buildings to cease and begin ice development. Biochem Tendencies. Sci. 39, 548-555 (2014).

7.

DeOliveira, D.B. & Laursen, R.A. Management of the morphology of calcite crystals by a peptide designed to bind to a particular floor. Jam. Chem. Soc. 119, 10627-10631 (1997).

Eight

Masica, D.L., Schrier, S.B., Specht, E.A. & Grey, J.J. New design of peptide-calcite biomineralization methods. Jam. Chem. Soc. 132, 12252-12262 (2010).

9

Music, R. & Cölfen, H. Additive Managed Crystallization. CrystEngComm 13, 1249-1276 (2011).

ten.

Grigoryan, G. et al. Pc design of protein-like protein assemblies on carbon nanotube surfaces. Science 332, 1071-1076 (2011).

11

Brown, C.L., Aksay, I.A., Saville, D.A. & Hecht, M.H. Assemblage directed by a mannequin of a de novo designed protein. Jam. Chem. Soc. 124, 6846-6848 (2002).

12

Mustata, G.-M. et al. Symmetry of graphene amplified by self-assembly of peptides designed Biophys. J. 110, 2507-2516 (2016).

13

Leow, W. W. & Hwang, W. Epitaxially guided meeting of collagen layers on mica surfaces. Langmuir 27, 10907-10913 (2011).

14

Tao, J. et al. Vitality base for the group of bone on the molecular stage. Proc. Natl Acad. Sci. USA 112, 326-331 (2015).

15

Akutagawa, T. et al. Formation of molecular nanowires oriented on the floor of mica. Proc. Natl Acad. Sci. USA 99, 5028-5033 (2002).

16

Bathroom, R.W. & Goh, M.C. Meeting of collagen microfibrils mediated by potassium ion on mica. Langmuir 24, 13276-13278 (2008).

17

Shin, S.-H. et al. Direct statement of kinetic traps related to structural transformations resulting in a number of pathways of the S layer. Proc. Natl Acad. Sci. USA 109, 12968-12973 (2012).

18

Aghebat Rafat, A., T. Pirzer, M. Scheible, B. Kostina, A. and Simmel, F. C. Massive-scale surface-assisted management of DNA origami tiles. Angew. Chem. Int. Edn Engl. 53, 7665-7668 (2014).

19

Ma, X. et al. Adjustment of crystallization pathways by sequence engineering of biomimetic polymers Nat. Mater. 16, 767-774 (2017).

20

Brunette, T.J. et al. Discover the universe of repeated protein by means of the pc design of proteins. Nature 528, 580-584 (2015).

21

Dyer, Okay.N. et al. Excessive throughput SAXS for the characterization of biomolecules in resolution: a sensible strategy. Mol. Biol. 1091, 245-258 (2014).

22

Schneidman-Duhovny, D., M. Hammel, J. Tainer and A. Sali, A. Exact calculation of the SAXS profile and analysis utilizing contrast-change experiments. Biophys. J. 105, 962-974 (2013).

23

Kuwahara, Y. Comparability of the superficial construction of tetrahedral leaves of muscovite and phlogopite by AFM. Phys. Chem. Minor. 28, 1-Eight (2001).

24

Boles, M.A., Engel, M. and Talapin, D. V. Self-assembly of colloidal nanocrystals: from complicated buildings to practical supplies. Chem. Rev. 116, 11220-11289 (2016).

25

Ruotolo, B.T. & Robinson, C.V Facets of native proteins are saved below vacuum. Curr. Opin. Chem. Biol. 10, 402-408 (2006).

26

Sahasrabuddhe, A. et al. Affirmation of the inter-subunit connectivity and topology of protein complexes designed by native MS. Proc. Natl Acad. Sci. USA 115, 1268-1273 (2018).

27

Whitelam, S. et al. The frequent bodily framework explains the part conduct and dynamics of atomic, molecular and polymeric community trainers. Phys. Rev. X four, 011044 (2014).

28

Fallas, J.A. et al. Pc design of homo-oligomers of cyclic proteins with self-assembly. Nat. Chem. 9, 353-360 (2017).

29

Boyken, S.E. et al. De novo design of homo-oligomers of modular specificity proteins mediated by a hydrogen bonding community. Science 352, 680-687 (2016).

30

Wang, J. et al. Differential modulating impact of MoS2 on amyloid peptide assemblages. Chemistry 24, 3397-3402 (2018).

31.

Chan, P., Curtis, R.A. and Warwicker, J. The soluble expression of proteins correlates with a scarcity of positively charged floor space. Sci. Rep. three, 3333 (2013).

32

MacKerell, A.D. et al. Empirical potential any atom for molecular modeling and protein dynamics research. J. Phys. Chem. B 102, 3586-3616 (1998).

33

Kleffner, R. et al. Foldit Standalone: ​​a protein construction manipulation interface derived from a online game utilizing Rosetta. Bioinformatics 33, 2765-2767 (2017).

34

McDaniel, J.R., Mackay, J.A., Quiroz, F.G. and Chilkoti, A. Recursive directional ligation by plasmid reconstruction permits fast and steady cloning of oligomeric genes. Biomacromolecules 11, 944-952 (2010).

35

Tang, N.C. & Chilkoti, A. Codon combinatorial scrambling permits for the synthesis and amplification of genes on a scale, in addition to the amplification of repetitive proteins. Nat. Mater. 15, 419-424 (2016).

36

Rambo, R. P. ScÅtter: SAXS evaluation software program. Model three.zero http://www.bioisis.internet/tutorial/9 (Diamond gentle supply and SIBYLS gentle line (12.three.1) of the superior gentle supply, 2016).

37

Rambo, R. P. & Tainer, J. A. Characterization of versatile and inherently unstructured organic macromolecrosis by SAS utilizing the regulation of Porod-Debye. Biopolymers 95, 559-571 (2011).

38

Bernadó, P. & Svergun, D. I. Structural evaluation of inherently disordered proteins by small angle X-ray scattering. Mol. Biosyst. Eight, 151-167 (2012).

39

VanAernum, Z. L. et al. Floor-induced dissociation of non-covalent protein complexes in an prolonged mass vary orbitrap mass spectrometer. Anal. Chem. 91, 3611-3618 (2019).

40

Waitt, G.M., Xu, R., Correctly, G.B. & Williams, J.D. Computerized gel gel filtration for mass spectrometry within the native state. Jam. Soc. Spectrom. 19, 239-245 (2008).

41

Marty, M.T. et al. Bayesian deconvolution of mass and ion mobility spectra: binary interactions to polydispersed units. Anal. Chem. 87, 4370-4376 (2015).

42

Kilpatrick, E.L., Liao, W.L., Camara, J.E., Turko, I.V. & Bunk, D.M.Expression and characterization of 15N-labeled human C-reactive protein in Escherichia coli and Pichia pastoris to be used in isotopic dilution mass spectrometry. Protein Expr. Purif. 85, 94-99 (2012).

43

Frenkel, D. & Eppenga, R. Proof of the order of algebraic orientation in a two-dimensional hard-core nematic. Phys. Rev. A 31, 1776-1787 (1985).

44

Newcomb, C.J., Qafoku, N.P., Grate, J.W., Bailey, V.L. and De Yoreo, J.J. Nat. Frequent. Eight,396 (2017).

45

Martin-Jimenez, D., Chacon E., Tarazona, P. & Garcia, R. Three-dimensional buildings solved atomically of aqueous options of electrolytes close to a strong floor. Nat. Frequent. 7, 12164 (2016).

46

Fleishman, S.J. et al. RosettaScripts: scripting language interface for the Rosetta macromolecular modeling suite. PLoS One 6, e20161 (2011).

47

Huang, P. S. et al. RosettaRemodel: a generalized framework for versatile design of again proteins. PLoS One 6, e24109 (2011).

48.

Chaudhury, S., Lyskov, S. and Grey, J. J. PyRosetta: a script-based interface for the implementation of molecular modeling algorithms with the assistance of Rosetta. Bioinformatics 26, 689-691 (2010).

49

The molecular graph system PyMOL. Model 2.1.1 https://pymol.org/2/ (Schrödinger, 2018).

Leave a Reply

Your email address will not be published. Required fields are marked *