Nature News

Reconstruction of the historical past of the moon on the top of the accretion


Bottke, W.F. et al. Late stochastic accumulation on Earth, Moon and Mars. Science 330, 1527-1530 (2010).


Schlichting, H.E., Warren, P.H. & Yin, Q.-Z. The final phases of the formation of the terrestrial planet: dynamic friction and late veneer. Astrophysics J. 752, Eight-16 (2012).


Morbidelli, A. et al. A sawtooth chronology for the primary billions of years of lunar bombardment. Earth. Sci. Lett. 355-356, 144-151 (2012).


Neukum, G., Ivanov, B.A. and Hartmann, W.Ok. Crater data within the inside photo voltaic system in relation to the lunar reference system. House Sci. Rev. 96, 55-86 (2001).


Day, J. M. D. & Walker, R. J. Exhaustion of extremely siderophile parts within the Moon. Earth. Sci. Lett. 423, 114-124 (2015).


Day, J. M.D. et al. Isotope of osmium and systematic extremely siderophilic parts of the lunar crust. Earth. Sci. Lett. 289, 595-605 (2010).


Elkins-Tanton, L., Burgess, S. & Yin, Q. Z. The Ocean of Lunar Magma: Reconciling the Solidification Course of with Lunar Petrology and Geochronology. Earth. Sci. Lett. 304, 326-336 (2011).


Borg, L.E. et al. Chronological proof that the moon is younger or has no international magma ocean. Nature 477, 70-72 (2011).


Morbidelli, A. et al. The chronology of lunar bombardment: revisited. Icarus 305, 262-276 (2018).


Canup, R. M. Kind a Moon with a composition just like Earth through a large influence. Science 338, 1052-1055 (2012).


Cuk, M. and Stewart S. T. Making the Moon from a Quickly Rotating Earth: A Large Impression adopted by Resonant Pinning. Science 338, 1047-1052 (2012).


Jones, J.H. & Drake, M.J. Primary formation and late historical past of the Earth. Nature 323, 470-471 (1986).


Morgan, J. W., Walker, R., Brandon, A. & Horan, M. F. Siderophile parts within the higher mantle and lunar breaches of the Earth: the synthesis of the information suggests manifestations of the identical late inflow. Meteorit. Planet. Sci. 36, 1257-1275 (2001).


Walker, R. J. Extremely siderophilic parts of Earth, Moon and Mars: replace and implications for planetary accretion and differentiation. Chem. Erde Geochem. 69, 101-125 (2009).


Warren, P.H., Jerde, E.A. & Kallemeyn, G.W. Prisitine Lunar Rocks: Apollo 17 anorthosites. Proc. Lunar planet. Sci. Conf. 21, 51-61 (1991).


Ryder, G. Mass Circulate within the Previous Earth-Moon System and Benign Implications for the Origin of Life on Earth. J. Geophys. Res. 107 (E4), 5022 (2002).


Kraus, R.G. et al. Spraying planetesimal nuclei on the final phases of the formation of the planet. Nat. Geosci. Eight, 269-272 (2015).


Artemieva, N.A. & Shuvalov, V.V. Numerical simulation of ejecta impacts at excessive pace following falling comets and asteroids on the Moon. Floor. Syst. Res. 42, 329-334 (2008).


Elbeshausen D. et al. The transition from round influence crater to elliptical. J. Geophys. Res. 118, 2295-2309 (2013).


Feuvre, M. & Wieczorek, M. A. Nonuniform Cratering of the Moon and a Revised Chronology of the Crater of the Inside Photo voltaic System. Icarus 214, 1-20 (2011).


Shoemaker, E.M. in Moon Physics and Astronomy (ed Kopal, Z.) 283-359 (Educational, 1962).


Holsapple, Ok.A. & Housen, Ok.R. A crater and its ejecta: an interpretation of the profound influence. Icarus 191, 586-597 (2007).


Wieczorek, M.A. et al. The crust of the moon seen by GRAIL. Science 339, 671-675 (2013).


Norman, M.D. et al. Chronology, geochemistry and petrology of a ferroan noritic anorthosite clast from the Descartes hole 67215: age indices, origin, construction and influence of the Historical past of the lunar crust. Meteorit. Planet. Sci. 38, 645-661 (2003).


Kleine, T. et al. Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. GEOCHIM. Cosmochim. Acta 73, 5150-5188 (2009).


Borg, L.E. et al. A overview of lunar chronology revealing a preponderance of ages from four.34 to four.37 Ga. Meteorit. Planet. Sci. 50, 715-732 (2015).


Nemchin, A. et al. Second of the crystallization of the ocean of lunar magma pressured by the oldest ziron. Nat. Geosci. 2, 133-136 (2009).


Rubie, D.C. et al. Extremely siderophilic parts had been faraway from the Earth's mantle by segregation of iron sulphide. Science 353, 1141-1144 (2016).


Miljković, Ok. et al. Excavation of the lunar mantle by basin formation influence occasions on the Moon. Earth. Sci. Lett. 409, 243-251 (2015).


Neumann, G.A. et al. Lunar influence basins revealed by gravity restoration and indoor laboratory measurements. Sci. Adv. 1, e1500852 (2015).


Frey, H. in Current Advances and Present Analysis Questions in Lunar Stratigraphy, vol. 477 (Ambrose, eds., W.A. & Williams, D.A.) 53-75 (Geological Society of America, 2011).


Kamata, S. et al. The relative second of solidification of the ocean lunar magma and late intense bombardment deduced from strongly degraded basin constructions. Icarus 250, 492-503 (2015).


Elkins-Tanton, L. Linked solidification of the magma-bound ocean and atmospheric progress for the Earth and Mars. Earth. Sci. Lett. 271, 181-191 (2008).


Day, J.MD, Pearson, D.G. and Taylor, L. A. Constraints associated to extremely siderophile parts for accretion and differentiation of the Earth-Moon system. Science 315, 217-219 (2007).


Day, J.MD, Brandon, A.D. & Walker, R. J. Extremely siderophilic parts of Earth, Mars, Moon and Asteroids. Rev. Mineral. Geochem. 81, 161-238 (2016).


Day, J. M. D. Geochemical constraints on steel and sulphide residues within the sources of lunar mares basalts. A m. Mineral. 103, 1734-1740 (2018).


Walker, R.J., Horan, M.F., Shearer, C.Ok. & Papike, J.J. Low abundance of extraordinarily siderophilic parts within the lunar mantle: proof of extended late accumulation. Earth. Sci. Lett. 224, 399-413 (2004).


Taylor, G.J. & Wieczorek, M. A. Lunar bulk chemical composition: post-gravimetric restoration and re-evaluation of the inside laboratory. Phil Trans. A 372, 20130242 (2014).


Morgan, J.W., Gros, J., Takahashi, H. & Hertogen, H. Lunar breccia 73215: siderophile and unstable parts. Proc. Lunar Sci. Conf. 7, 2189-2199 (1976).


Gros, J., Tahahashi, H., Hertogen, J. Morgan, J. W. and Anders, E. Composition of the projectiles having bombarded the lunar highlands. Proc. Lunar Sci. Conf. 7, 2403-2425 (1976).


Norman, M.D., Bennett, V.C. & Ryder, G. Concentrating on impactors: Signatures of the siderophile parts of melting lunar impacts from Serenatatis. Earth. Sci. Lett. 202, 217-222 (2002).


Puchtel, I. S. et al. The systematics of osmium isotopes and extremely siderophilic parts in lunar influence soften breaches: implications for the late accumulation historical past of the Moon and Earth. GEOCHIM. Cosmochim. Acta 72, 3022-3042 (2008).


Gleißner, P. & Becker, H. Formation of Apollo 16 impactites and composition of late added materials: isotope stresses Bones, extremely siderophilic parts and abundance of sulfur. GEOCHIM. Cosmochim. Acta 200, 1-24 (2017).


Schultz, P. & Gault, D. E. Intensive international disasters brought on by indirect impacts. Spec. Mush. Geol. Soc. A m. 247, 239-262 (1990).


Daly, R. T. & Shultz, P. H. Predictions of contaminant contamination on Ceres primarily based on hypervelocity influence experiments. Geophysics Res. Lett. 42, 7890-7898 (2015).


Daly, R. T. & Shultz, P. H. Sending a projectile part to the Vestan Regolith. Icarus 264, 9-19 (2016).


Daly, R. T. & Schultz, P. H. Preservation of projectiles throughout indirect hypervelic impacts. Meteorit. Planet. Sci. 54, 1364-1390 (2018).


Thompson, S. L. & Lauson, H. S. Enhancements to GRAPH D Hydrodynamic Radiation Code III: Revised State Analytical Equations. Report SC-RR-71 0714 (Sandia Nationwide Laboratory, 1972).


Benz, W. et al. The origin of the Moon and the idea of a single influence III. Icarus 81, 113-131 (1989).


Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854-857 (1997).


Davison, T.M. et al. Numerical modeling of indirect hypervelocity impacts on extremely ductile targets. Meteorit. Planet. Sci. 46, 1510-1524 (2011).


Potter, R. W. et al. in Impacts of Massive Meteorites and Planetary Evolution V (Osinski, G.R., and Kring, A.A.) 99-113 (Lunar and Planetary Institute, 2015).


Marchi, S. et al. A brand new chronology for the moon and mercury. Astron. J. 137, 4936-4948 (2009).


Collins, G.S., Melosh, H.J. and Ivanov, B.A. Injury and pressure modeling in influence simulations. Meteorit. Planet. Sci. 39, 217-231 (2004).


Ahrens, T. J. and O'Keefe, J. D. Fusion and shock by evaporation of lunar rocks and minerals. Moon four, 214-249 (1972).


Pierazzo, E., Vickery, A.M. and Melosh, H.J. A reassessment of the influence soften product. Icarus 127, 408-423 (1997).


Pierazzo, E. & Melosh, H. J. Modeling Hydrocode of indirect impacts: the destiny of the projectile. Meteorit. Planet. Sci. 35, 117-130 (2000).


Marchi, S. et al. Mixing and burial widespread of the Hadean crust of the Earth as a consequence of asteroid impacts. Nature 511, 578-582 (2014).


Schultz, P.H. & Sugita, S. Destiny of the Chicxulub impactor. In 28th Annu. Lunar planet. Sci. Conf. 1261-1262 (1997).


Collins, G. S., Ok. Miljkovic and T. Davison. The impact of planetary curvature on the crater ellipticity of influence. EPSC Abstr. Eight, EPSC2013-989 (2013).


Bottke, W.F. et al. Relationship of the influence occasion forming the Moon with asteroid meteorites. Science 348, 321-323 (2015).


Laneuville, M., Wieczorek, M. and Breuer, D. Uneven Thermal Evolution of the Moon. J. Geophys. Res. Planets 118, 1435-1452 (2013).


Ivanov, B. A. and Artemieva, N. A. in Catastrophic and mass extinctions: impacts and past, vol. 356 (eds Koeberl, C. and MacLeod, Ok.G.) 619-630 (Geological Society of America, 2002).


Miljkovic, Ok. et al. Uneven distribution of the lunar influence basins brought on by variations within the properties of the goal. Science 342, 724-726 (2013).


Freed, A. M. et al. The formation of the Masonic lunar basins of influence to the up to date kind. J. Geophys. Res. 119, 2378-2397 (2014).


Potter, R.W.Ok. et al. Restrict the scale of the influence of the South Pole-Aitken basin. Icarus 220, 730-743 (2012).


Zhu, M. -H. et al. Numerical modeling of ejecta distribution and japanese basin formation. J. Geophys. Res. 120, 2118-2134 (2015).


Melosh, H. J. Crater Impression: A Geological Course of (Oxford Univ Press, 1989).


Pleasure, Ok.H. et al. Direct detection of projectile relics on the finish of the lunar basin formation. Science 336, 1426-1429 (2012).


Liu, J.G. et al. Totally different impactors within the Apollo 15 and 16 influence fusion rocks: proof from isotopes of osmium and extremely siderophilic parts. GEOCHIM. Cosmochim. Acta 155, 122-153 (2015).


Croft, S. Ok. Scaling Advanced Craters. Proc. Lunar planet. Sci. Conf. 16, 828-842 (1985).


McKinnon, W.B. & Schenk, P.M. Ejecta common protection of the Moon and Mercury and interference to projectile populations. Lunar planet. Sci. XVI, 544-545 (1985).


Wilhelms, D. E. Geological historical past of the moon. USGS Skilled Paper 1348 (US Geological Survey, 1987).


Miljkovic, Ok. et al. Elusive formation of swimming pools of influence on the younger moon. In Proc. 48th lunar planetary scientific convention 1361 (2017).


Gault, D. E. & Wedekind, J. A. Experimental research of indirect influence. In Proc. ninth Lunar Planetary Science Convention, 3843-3875 (1978).


Pierazzo, E. & Melosh, H. J. Forged iron manufacturing in indirect impacts. Icarus 145, 252-261 (2000).


Pierazzo, E. and Melosh, H. J. Understanding the indirect impacts of experiments, observations and modeling. Annu. Rev. Planet Earth. Sci. 28, 141-167 (2000).


Jones, A. P. et al. The induced melting by the influence and growth of enormous igneous provinces. Earth. Sci. Lett. 202, 551-561 (2002).


Kendall, J. D. and Melosh, H. J. Differential planetesimal impacts in an ocean of terrestrial magma: changing into iron core. Earth. Sci. Lett. 448, 24-33 (2016).


Shuvalov, V.V. et al. Crater ejecta: markers of influence disasters. Phys. Stable Earth 48, 241-255 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *