Nature News

Nonlinear Optics within the Fractal Quantum Corridor Regime

1.

O'Brien, J.L., Furusawa, A. and Vučković, J. Photonic quantum applied sciences. Nat. Photon. three, 687-695 (2009).

2

Carusotto, I. & Ciuti, C. Quantum mild fluids. Rev. Mod. Phys. 85, 299-366 (2013).

three

Sanvitto, D. & Kéna-Cohen, S. The street to polaritonic gadgets. Nat. Mater. 15, 1061-1073 (2016).

four

Muñoz-Matutano, G. et al. Emergence of quantum correlations from fiber-cavity polariton interactions. Nat. Mater. 18, 213-218 (2019).

5

Delteil, A. et al. In direction of polariton blocking of confined excitons-polaritons. Nat. Mater. 18, 219-222 (2019).

6

Orchard, A., Ciuti, C. and Carusotto, I. Quantum blockade of Polariton in a photonic level. Phys. Rev. B 73, 193306 (2006).

7.

Smolka, S. et al. Quantum electrodynamics of the cavity with a number of physique states of a two – dimensional electron gasoline. Science 346, 332-335 (2014).

eight

Schmidt, R., Enss, T., Pietilä, V. and Demler, E. Fermi, polarons in two dimensions. Phys. Rev. A 85, 021602 (2012).

9

Sidler, M. et al. Fermi polaron-polaritons in atomically skinny and tunable semiconductors in cost. Nat. Phys. 13, 255-261 (2017).

ten.

Efimkin, D.Ok. & MacDonald, A.H. Exciton-polarons in doped semiconductors in a powerful magnetic area. Phys. Rev. B 97, 235432 (2018).

11

Ravets, S. et al. Polaron polaritons in complete and fractional quantum Corridor regimes. Phys. Rev. Lett. 120, 057401 (2018).

12

Jia, N. et al. A polaritic quantum level in sturdy interplay. Nat. Phys. 14, 550-554 (2018).

13

Deng, H., Haug, H. and Yamamoto, Y. Condensation of Bose – Einstein Exciton-polariton. Rev. Mod. Phys. 82, 1489-1537 (2010).

14

Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

15

Solar, Y. et al. Bose – Einstein condensation of lengthy life polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

16

Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic, Feshbach Resonance. Nat. Phys. 10, 500 to 504 (2014).

17

Cristofolini, P. et al. Quantum tunnel coupling with cavity photons. Science 336, 704-707 (2012).

18

Rosenberg, I. et al. Sturdy interactions between dipolar polaritons. Sci. Adv. four, ea8888 (2018).

19

Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced Interactions Between Dipolar Polaritons. Phys. Rev. Lett. 121, 227402 (2018).

20

Kukushkin, I.V., V. Klitzing, Ok. & Eberl, Ok. Spin Polarization of Composite Fermions: Fermi Vitality Measurements. Phys. Rev. Lett. 82, 3665-3668 (1999).

21

Byszewski, M. et al. Optical sounding of composite fermions in a two-dimensional digital gasoline. Nat. Phys. 2, 239-243 (2006).

22

Groshaus, J.G. et al. Absorption within the fractional quantum Corridor regime: trion dichroism and spin polarization. Phys. Rev. Lett. 98, 156803 (2007).

23

Bar-Joseph, I. Trions in quantum wells of GaAs. Semicond. Sci. Technol. 20, R29 to R39 (2005).

24

Hayakawa, J., Muraki, Ok. and Yusa, G. Actual-space imaging of fractional quantum Corridor liquids. Nat. Nanotechnol. eight, 31-35 (2013).

25

Bartolo, N. & Ciuti, C. – Vacuum cavity magnetotransport of a two dimensional electron gasoline. Phys. Rev. B 98, 205301 (2018).

26

Paravicini-Bagliani, G.L. et al. Magneto-transport managed by the states of Landiton polariton. Nat. Phys. 15, 186-190 (2019).

27

Rapaport, R. et al. Negatively charged quantum properly polaritons in a GaAs / AlAs microcavity: analogue of atoms in a cavity. Phys. Rev. Lett. 84, 1607-1610 (2000).

28

Rapaport, R., Cohen, E., Ron, Ron, Linder, E. and Pfeiffer, L. N. Polaritons negatively charged in a semiconductor microcavity. Phys. Rev. B 63, 235310 (2001).

29

Suris, R. A. In Optical properties of 2D methods with interacting electrons (Eds Ossau, W.J. and Suris, R.) 111-124 (Springer Science and Enterprise Media, 2003).

30

Rodriguez, S. R. Ok. et al. Interplay-induced leap part in photonic microcavities coupled by dissipation and dissipation. Nat. Widespread. 7, 11887 (2016).

31.

Brichkin, A. S. et al. Impact of Coulomb interplay on exciton-polariton condensates in GaAs-pillar microcavities. Phys. Rev. B 84, 195301 (2011).

32

Walker, P. et al. Darkish solitons in polariton fluids of high-speed waveguides. Phys. Rev. Lett. 119, 09703 (2017).

33

Stepanov, P. et al. Relation relationship of collective excitations in a resonant polariton fluid. Preprint on the handle https://arxiv.org/abs/1810.12570(2018).

34

Boyd, R. W. Nonlinear optics (Elsevier, 2008).

35

Corridor, Ok.L., Lenz, G., Ippen, E.P. and Raybon, G. Heterodyne pump – probe method for time area research of optical nonlinearities in waveguides. Decide. Lett. 17, 874-876 (1992).

36

Mecozzi, A. and Mørk, J. Transient, time-resolved four-wave mixing with collinear pump and probe pulses utilizing the heterodyne method. J. Eur. Decide. Soc. A 7, 335-344 (1998).

37

Patton, B., Woggon, U. & Langbein, W. Coherent management and polarization readings of particular person exciton states. Phys. Rev. Lett. 95, 266401 (2005).

38

Kohnle, V. et al. 4-wave mixing excitations in a dissipative polariton quantum fluid. Phys. Rev. B 86, 064508 (2012).

39

Nardin, G., Autry, T.M., Silverman, Ok.L. & Cundiff, S.T. Constant multidimensional photocurrent spectroscopy of a semiconductor nanostructure. Decide. Specific 21, 28617 (2013).

40

Smallwood, C.L. & Cundiff, S.T. Multidimensional Coherent Spectroscopy of Semiconductors. Laser Photonics Rev. 12, 1800171 (2018).

41

Wouters, M. & Carusotto, I. Excitations in a Bose – Einstein condensate off stability of excitons polaritons. Phys. Rev. Lett. 99, 140402 (2007).

42

Keeling, J. and Berloff, N. G. Vortex lattices in spontaneous rotation in decomposed pumped condensate. Phys. Rev. Lett. 100, 250401 (2008).

43

Ciuti, C., V. Savona, C. Piermarocchi, A. Quattropani, A. and Schwendimann, P. Position of provider alternate in exciton-exciton elastic scattering in quantum wells. Phys. Rev. B 58, 7926-7933 (1998).

44

Tassone, F. & Yamamoto, Y. Exciton – Exciton diffusion dynamics in a semiconductor microcavity and stimulated polariton scattering. Phys. Rev. B 59, 10830-10842 (1999).

45

Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805-810 (2009).

46

Byrnes, T., Kolmakov, G.V., Kezerashvili, R. Y. and Yamamoto, Y. Efficient interplay and condensation of dipolaritons in coupled quantum wells. Phys. Rev. B 90, 125314 (2014).

47

Nalitov, A.V., Solnyshkov, D.D., Gippius, N.A. and Malpuech, G. Controlling the voltage of spin-dependent interplay constants of dipolaritons and its utility to optical parametric oscillators. Phys. Rev. B 90, 235304 (2014).

Leave a Reply

Your email address will not be published. Required fields are marked *