Nature News

The dimensions and form of the insect eggs evolve with ecology however not with the event

1.

Peters, R. H. Ecological implications of physique dimension (Cambridge Univ Press, 1983).

2

Allen, R.M., Buckley, Y.M. and Marshall, D.J. Plasticity of progeny dimension in response to intraspecific competitors: an adaptive maternal impact throughout life levels. A m. Nat. 171: 225-237 (2008).

three

Blanckenhorn, W. U. The evolution of dimension: what makes the organisms keep small? Q. Rev. Biol. 75, 385-407 (2000).

Four

Kingsolver, J. G. and Pfennig, D. W. Particular person-level choice as a reason behind Cope's rule regarding phyletic dimension improve. Evolution 58, 1608-1612 (2004).

5

Stanley, S. M. A proof of Cope's rule. Evolution 27, pp. 1 to 26 (1973).

6

LaBarbera, M. Analyze the dimensions of the physique as an element of ecology and evolution. Annu. Rev. Faculty. Syst. 20, 97-117 (1989).

7.

Chown, S. L. and Gaston, Okay. J. Variation in physique dimension in bugs: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139-169 (2010).

eight

Hinton, H. E. Biology of Insect Eggs, vol. I – III (Pergammon, 1981).

9

Thompson, D. W. On Development and Type (Cambridge Univ Press, 1917).

ten.

Fox, C. W. & Czesak, M. E. Evolutionary ecology of offspring pruning in arthropods. Annu. Rev Entomol. 45, 341-369 (2000).

11

Berrigan, D. Allometry of dimension and variety of eggs in bugs. Oikos 60, 313-321 (1991).

12

García-Barros, E. Physique dimension, egg dimension and their interspecific relationships with the ecological and organic traits of the butterfly (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251-284 (2000).

13

Stoddard, M.C. et al. Avian egg: type, perform and evolution. Science 356, 1249-1254 (2017).

14

Bernardo, J. The actual maternal impact of propagule dimension, particularly egg dimension: fashions, fashions, high quality of proof and interpretations. A m. Zool. 36, 216-236 (1996).

15

Hinton, H. E. Respiratory programs of eggshells of bugs. Annu. Rev Entomol. 14, 343-368 (1969).

16

Legay, J. M. Allometry and systematic of the insect egg type. J. Nat. Hist. 11, 493-499 (1977).

17

Blackburn, T. Proof of a "fast-slow" continuum of life traits in parasitoid hymenoptera. Funct. Faculty. 5, 65-74 (1991).

18

Kratochvíl, L. & Frynta, D. Allometry of the form and dimension of eggs in geckos (Squamata: Gekkota), lizards with contrasting eggshell construction: why lay spherical eggs? J. Zoological Syst. Evol. Res. 44, 217-222 (2006).

19

Bilder, D. & Haigo, S. L. Enlargement of the morphogenetic repertoire: views of the Drosophila egg. Dev. Cell 22, 12-23 (2012).

20

Steele, D. & Steele, V. Dimension of the egg and period of embryonic growth in crustaceans. Int. Gesamten Hydrobiol. Hydrographer. 60, 711-715 (1975).

21

Sargent, R. C., Taylor, P.D. and Gross, M. R. Parental care and the evolution of egg dimension in fish. A m. Nat. 129, 32-46 (1987).

22

Maino, J. L. & Kearney, M. R. Ontogenetic and interspecific metabolic desalting in bugs. A m. Nat. 184, 695-701 (2014).

23

Iwata, Okay. & Sakagami, S. F. Gigantism and dwarfism in bee eggs in relation to existence, with notes on the variety of ovarioles. Jap. J. Ecol. 16, Four-16 (1966).

24

Church, S.H., Donoughe, S.D., of Medeiros, B.A.S. and Extavour, C.G. A set of knowledge on the dimensions and form of eggs from over 6,700 species of bugs. Sci. Knowledge https://doi.org/10.1038/s41597019-0049-y (2019).

25

Misof, B. et al. Phylogenomics solves the timing and sample of insect evolution. Science 346, 763-767 (2014).

26

Rainford, J.L., Hofreiter, M., Nicholson, D.B. and Mayhew, P.J.The phylogenetic distribution of current wealth means that metamorphosis is an important innovation within the service of insect diversification. PLoS ONE 9, e109085 (2014).

27

Leiby, R. & Hill, C. The polyembryonic growth of Platygaster vernalis. J. Agric. Res. 28, 829-839 (1924).

28

Houston, T. F. Genital cells, life cycle levels and growth of sure Colorado beetles of the genus Bolborhachium, Blackburnium and Bolboleaus (Coleoptera: Geotrupidae), with notes on captive breeding and a dialogue of larval eating regimen. Aust. Entomol. 55, 49-62 (2016).

29

Goldberg, J. et al. Excessive convergence within the spawning technique of insect orders. Sci. Rep. 5, 7825 (2015).

30

Harmon, L.J. et al. Early modifications in physique dimension and form evolution are uncommon within the comparative information. Evolution 64, 2385-2396 (2010).

31.

Uyeda, J.C., Hansen, T.F., Arnold, S.J. and Pienaar, J. The expectation of 1,000,000 years for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908-15913 (2011).

32

Cooper, N. & Purvis, A. Evolution of mammal dimension: complexity of tempo and mode. A m. Nat. 175, 727-738 (2010).

33

Peters, R.H. & Wassenberg, Okay. The impact of physique dimension on the abundance of animals. Oecologia 60, 89-96 (1983).

34

Sieg, A.E. et al. Metabolic allometry in mammals: are patterns of intraspecific variation, phylogeny and regression vital? A m. Nat. 174, 720-733 (2009).

35

Polilov, A. A. Small is gorgeous: traits of the smallest bugs and limits of miniaturization. Annu. Rev Entomol. 60, 103-121 (2015).

36

Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. and Charnov, E.L., Results of dimension and temperature on metabolic charge. Science 293, 2248-2251 (2001).

37

Felsenstein, J. Phylogenies and the comparative methodology. A m. Nat. 125, 1-15 (1985).

38

Rensch, B. Histological modifications correlated with evolutionary modifications in physique dimension. Evolution 2, 218-230 (1948).

39

Rainford, J.L., Hofreiter, M. and Mayhew, P. J. Phylogenetic analyzes counsel that diversification and dimension change are impartial in bugs. BMC Evol. Biol. 16, eight (2016).

40

Gregory, T. R. Coincidence, coevolution, or causality? DNA content material, cell dimension and worth puzzle C. Biol. Rev. Camb. Philos. Soc. 76, 65-101 (2001).

41

Gregory, T. R. Animal genome dimension database. Model 2.zero http://www.genomesize.com (2019).

42

Roff, D. A. The evolution of the absence of flight in bugs. Faculty. Monogram. 60, 389-421 (1990).

43

Whiting, M. F., Bradler, S. and Maxwell, T. Loss and restoration of wings in membership bugs. Nature 421, 264-267 (2003).

44

Trueman, J., Pfeil, B., Kelchner, S. and Yeates, D. Did the bugs of the branches actually get better their wings? Syst. Entomol. 29, 138-139 (2004).

45

Stancă-Moise, C. et al. Migratory species of butterflies within the neighborhood of Sibiu (Romania). Sci. Mush. Ser. Handle. Econ. Eng. Agric. Rev. Rural 16, 319-324 (2016).

46

Ivanova-Kasas, O. M. in Growth Methods: Bugs vol. 1 (Eds Counce, S.J. & Waddington, C.H.) Ch. 5, 243-271 (Educational, 1972).

47

Cooper, N., Thomas, G.H., C. Venditti, A. Meade, and R. P. Freckleton. Warning on the usage of Ornstein Uhlenbeck fashions in macro-evolutive research. Biol. J. Linn. Soc. 118, 64-77 (2016).

48.

Nieves-Uribe, S., Flores-Gallardo, A., Hernandez-Mejia, B.C. and Llorente-Bousquets, J. Mororal exploration of corion in Biblidinae (Lepidoptera: Nymphalidae): features of the standard of life and genes. South West. Entomol. 40, 589-648 (2015).

49

Barata, J. M. S. Morphological features of the eggs of Triatominae. II. Macroscopic and exochorial traits of ten species of the genus Rhodnius Stal, 1859 (Hemiptera – Reduviidae) (in Portuguese). Saude Publica 15, 490-542 (1981).

50

Iwata, Okay. Comparative anatomy of the ovary in Hymenoptera (data on 64 species of Aculeata in Thailand, with descriptions of ovarian eggs). Mushi 38, 101-109 (1965).

51.

Dutra, V.S., Ronchi-Teles, B., Steck, G.J. and Silva, J. G. Morgology of the Anastrepha spp. (Diptera: Tephritidae) within the group of fratercules utilizing scanning electron microscopy. Ann. Entomol. Soc. A m. 104, 16-24 (2011).

52.

Patterson, D., Mozzherin, D., Shorthouse, D. and Thessen, A. Difficulties in Utilizing Names to Hyperlink Digital Data on Biodiversity. Biodiverse. Knowledge J. Four, e8080 (2016).

53

Pyle, R. L. In direction of a worldwide structure of names: the way forward for the indexing of scientific names. ZooKeys 550, 261-281 (2016).

54

Rees, J. A. and Cranston, Okay. Automated meeting of a reference taxonomy for phylogenetic information synthesis. Biodiverse. Knowledge J. 5, e12581 (2017).

55.

Hinchliff, C.E. et al. Synthesis of phylogeny and taxonomy into an entire tree of life. Proc. Natl Acad. Sci. USA 112, 12764-12769 (2015).

56.

GBIF. GBIF: International Biodiversity Data System https://www.gbif.org/en/ (2018).

57

Clark, J. The capitulum of phasmid eggs (Insecta: Phasmida). Zool. J. Linn. Soc. 59, 365-375 (1976).

58.

Markow, T.A., Beall, S. & Matzkin, L.M.Egma dimension, embryonic developmental period and ovoviviparity in Drosophila species. I’m flying. Biol. 22, 430-434 (2009).

59

Glöckner, F. O. et al. 25 years serving the group with databases and reference instruments for the ribosomal RNA gene. J. Biotechnol. 261, 169-176 (2017).

60.

Quast, C. et al. The SILVA database mission on ribosomal RNA genes: improved information processing and Net instruments. Nucleic Acids Res. 41, D590 to D596 (2013).

61.

Yilmaz, P. et al. Taxonomic frameworks of SILVA and the "All-Residing Tree Tree" mission (LTP). Nucleic Acids Res. 42, D643 to D648 (2014).

62.

Pruesse, E., Peplies, J. & Glockner, F. O. SINA: Correct, high-sequence, multiple-sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823-1829 (2012).

63.

Smith, S.A. & Brown, J.W. Setting up a phylogeny of broadly accessible seed vegetation. A m. J. Bot. 105, 302-314 (2018).

64.

Jetz, W., Thomas, G.H., Pleasure, J.B., Hartmann, Okay. and Mooers, A. O. The worldwide variety of birds in area and time. Nature 491, 444-448 (2012).

65.

Ronquist, F. et al. MrBayes three.2: Efficient Bayesian phylogenetic inference and mannequin alternative in a big mannequin area. Syst. Biol. 61, 539-542 (2012).

66.

Maino, JL, Pirtle, EI & Kearney, MR The impact of egg dimension on hatching time and metabolic charge: theoretical and empirical data on embryo growth d & # 39; bugs. Funct. Faculty. 31, 227-234 (2017).

67.

Beaulieu, J.M., O'Meara, B.C. and Donoghue, M.J. Determine the hidden velocity modifications within the evolution of a morphological binary character: the evolution of plant behavior in campanulid angiosperms. Syst. Biol. 62, 725-737 (2013).

68.

Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. and Challenger, W. GEIGER: Evolutionary radiation examine. Bioinformatics 24, 129-131 (2008).

69

Pennell, M.W., FitzJohn, R.G., Cornwell, W.Okay. & Harmon, L.J. Adequacy of the mannequin and macro-evolution of the purposeful options of angiosperm. A m. Nat. 186, E33 to E50 (2015).

70.

Revell, L. J. phytools: an R bundle for comparative phylogenetic biology (and others). Ecol. Evol. three, 217-223 (2012).

71.

Rabosky, D. L. Computerized detection of key improvements, charge modifications and the dependence of variety on phylogenetic timber. PLoS ONE 9, e89543 (2014).

72.

Rabosky, D.L. et al. Bamm instruments: an R bundle for the evaluation of evolutionary dynamics on phylogenetic timber. Ecol. Evol. 5, 701-707 (2014).

73.

Paradis, E., Claude, J. & Strimmer, Okay. APE: Analyzes of Phylogenetics and Evolution of Language R. Bioinformatics 20, 289-290 (2004).

74.

Pinheiro, J. et al. nlme: linear and nonlinear combined results fashions. Bundle R model three.1-117 https://cran.r-project.org/net/packages/nlme/index.html (2014).

75.

Revell, L. J. Phylogenetic sign and linear regression on species information. Ecol. Evol. 1, 319-329 (2010).

76.

Tung Ho, L. s. & Ané, C. A linear algorithm for Gaussian and non-Gaussian trait evolution fashions. Syst. Biol. 63, 397-408 (2014).

77.

Beaulieu, J.M., Jhwueng, D.C., Boettiger, C. & O'Meara, B.C. Modeling of stabilizing choice: growth of the Ornstein-Uhlenbeck adaptive evolution mannequin. Evolution 66, 2369-2383 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *