Nature News

Unsupervised phrase incisions seize latent data from the scientific literature on supplies

1.

Hill, J. et al. Supplies science with knowledge and large-scale computing: unlocking new alternatives. MRS Bull. 41, 399-409 (2016).

2

Butler, Okay. T., Davies, D. W., Cartwright H., Isayev, O. & Walsh, A. Machine Studying for the Science of Molecules and Supplies. Nature 559, 547-555 (2018).

three

Friedman, C., Kra P., Yu Yu, Krauthammer, M. & Rzhetsky, A. GENIES: a pure language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17, S74 – S82 (2001).

four

Müller, H.M., Kenny, E.E. & Sternberg, P.W. Textpresso: an info retrieval and retrieval system primarily based on an ontology for organic literature. PLoS Biol. 2, e309 (2004).

5

Swain, M.C. & Cole, J.M. ChemDataExtractor: a toolbox for automated extraction of chemical info from the scientific literature. J. Chem. Inf. Mannequin. 56, 1894-1904 (2016).

6

Eltyeb, S. & Salim, N. Chemical – Recognition of Named Entities: Assessment of Approaches and Purposes. J. Cheminform. 6, 17 (2014).

7.

Kim, E. et al. Synthesis of literature on scientific literature by way of textual content extraction and machine studying. Chem. Mater. 29, 9436-9444 (2017).

eight

Leaman, R., Wei, C.H. and Lu, Z. TmChem: a excessive efficiency strategy for the popularity and standardization of chemical entities. J. Cheminform. 7, S3 (2015).

9

Krallinger, M., Rabal, O., Lourenco, A., Oyarzabal, J. and Valencia, A. Applied sciences for looking out info and looking out texts in chemistry. Chem. Rev. 117, 7673-7761 (2017).

ten.

Spangler, S. et al. Automated technology of hypotheses primarily based on scientific mining literature. In Proc. 20th ACM SIGKDD Intl Conf. Discovery of Data and Information Mining 1877-1886 (ACM, 2014).

11

Mikolov, T., Corrado G., Chen Okay. and Dean, J. Environment friendly estimation of representations of phrases within the vector house. Preprint on https://arxiv.org/abs/1301.3781 (2013).

12

Mikolov, T., I. Sutskever, Chen Okay., Corrado G. and Dean J., Distributed representations of phrases and expressions and their compositionality. Preprint on https://arxiv.org/abs/1310.4546 (2013).

13

Pennington, J., Socher, R. and Manning, C. GloVe: world vectors for the illustration of phrases. Proc. 2014 Conf. Empirical Strategies in Pure Language Processing (EMNLP) 1532-1543 (Affiliation for Computational Linguistics, 2014).

14

Liu, W. et al. New traits, methods and alternatives in thermoelectric supplies: a perspective. Supplies In the present day Physics 1, 50-60 (2017).

15

He, J. and Tritt, T. M. Superior analysis in thermoelectric supplies: look again and go from the entrance. Science 357, ea999997 (2017).

16

Ricci, F. et al. An ab initio digital transport database for inorganic supplies. Sci. Information four, 170085 (2017).

17

Hohenberg, P. & Kohn, W. Heterogeneous electron fuel. Phys. Rev. 136, B864-B871 (1964).

18

Kohn, W. & Sham, L. J. Self-consistent equations together with results of trade and correlation. Phys. Rev. 140, A1133-A1138 (1965).

19

Gaultois, M. W. et al. Information-Pushed Examination of Thermoelectric Supplies: Evaluation of Efficiency and Sources. Chem. Mater. 25, 2911-2920 (2013).

20

Spearman, C. The proof and the measure of the affiliation between two issues. A m. J. Psychol. 15, 72-101 (1904).

21

Plirdpring, T. et al. Chalcopyrite CuGaTe2: a thermoelectric materials in bulk with excessive effectivity. Adv. Mater. 24, 3622-3626 (2012).

22

Tian, ​​H. et al. Low symmetry two-dimensional supplies for digital and photonic functions. Nano In the present day 11, 763-777 (2016).

23

Pandey, C., Sharma, R. and Sharma, Y. Thermoelectric Properties of Chalcopyrite Defects. AIP Conf. Proc. 1832, 110009 (2017).

24

Zhao, L.-D. et al. Extremely-low thermal conductivity and excessive thermoelectric benefit consider SnSe crystals. Nature 508, 373-377 (2014).

25

Devlin, J., Chang, M.-W., Lee, Okay. & Toutanova, Okay. BERT: Pre-training of deep two-way transformers for language comprehension. Preprint on https://arxiv.org/abs/1810.04805 (2018).

26

Peters, M.E. et al. Deep representations of contextualized phrases. Preprint on https://arxiv.org/abs/1802.05365 (2018).

27

Jain, A. et al. The supplies mission: a genome strategy of supplies to speed up the innovation of supplies. APL Mater. 1, 011002 (2013).

28

Ong, S. P. et al. Python Supplies Genomics (pymatgen): a strong and open-source Python library for supplies evaluation. Comput. Mater. Sci. 68, 314-319 (2013).

29

Kresse, G. & Joubert, D. Ultrasonic pseudopotentials to the projection-augmented wave technique. Phys. Rev. B Condens. Materials Mater. Phys. 59, 1758-1775 (1999).

30

Perdew, J.P., Okay. Burke and Ernzerhof, M. Simplified generalized gradient approximation. Phys. Rev. Lett. 77, 3865-3868 (1996).

31.

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio preliminary vitality calculations utilizing a primary set of aircraft waves. Phys. Rev. B Condens. Matter 54, 11169-11186 (1996).

32

Kresse, G. & Furthmüller, J. Effectiveness of ab initio whole vitality calculations for metals and semiconductors utilizing a primary set of aircraft waves. Comput. Mater. Sci. 6, 15-50 (1996).

33

Madsen, G.Okay. & Singh, D.J. Boltztrap. A code for calculating portions depending on the band construction. Comput. Phys. Frequent. 175, 67-71 (2006).

34

Mathew, Okay. et al. Atomate: A high-level interface for producing, executing, and analyzing laptop science workflows associated to supplies science. Comput. Mater. Sci. 139, 140-152 (2017).

35

Jain, A. et al. Fireworks: A dynamic workflow system designed for high-throughput functions. Concurr. Comput. 27, 5037-5059 (2013).

36

Yang, X., Dai, Z., Zhao, Y., Liu, J. & Meng, S. Low thermal conductivity and wonderful thermoelectric conduct in Li3Sb and Li3Bi. J. Phys. Condens. Matter 30, 425401 (2018).

37

Wang, Y., Gao, Z. & Zhou, J. Thermal conductivity and digital properties of an ultra-low community of single-celled semiconductor 1T, SiTe2 and SnTe2. Physica E 108, 53-59 (2019).

38

Mukherjee, M., Yumnam, G. and Singh, A. Okay. Thermoelectric benefit determine elevated by adjustable valley convergence coupled with low thermal conductivity (rm A ^ { rm I rm I _ 2 ^ ) chalcopyrite. J. Phys. Chem. C 122, 29150-29157 (2018).

39

Kim, E. et al. Machine-coded and machine-learned synthesis parameters of oxide supplies. Sci. Information four, 170127 (2017).

40

Faber, F.A., Lindmaa, A., Von Lilienfeld, O.A & Armiento, R. Studying energies from 2 million crystals of elpasolite (ABC2D6). Phys. Rev. Lett. 117, 135502 (2016).

41

Zhou, Q. et al. Study atoms for the invention of supplies. Proc. Natl Acad. Sci. USA 115, E6411 to E6417 (2018).

Leave a Reply

Your email address will not be published. Required fields are marked *