Nature News

Complete animal connectomes of the 2 Caenorhabditis elegans the sexes

1.

White, J.G., Southgate, E., Thomson, J.N. and Brenner, S. The construction of the nematode nervous system Caenorhabditis elegans. Phil Trans. R. Soc. Lond. B 314, 1 to 340 (1986).

2

Albertson, D.G. & Thomson, J. N. The pharynx of Caenorhabditis elegans. Phil Trans. R. Soc. Lond. B 275, 299-325 (1976).

Three

Jarrell, T. A. et al. The connectome of a decisional neural community. Science 337, 437-444 (2012).

four

Corridor, D.H. & Russell, R.L. The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of recognized neurons and a whole schematic of synaptic interactions. J. Neurosci. 11, pp. 1-22 (1991).

5

Bumbarger, D.J., Riebesell, M., Rödelsperger, C. and Sommer, R. J. A system-wide rewiring of the system underlies variations in conduct of predatory and bacterial feeding nematodes. Cell 152, 109-119 (2013).

6

Helmstaedter, M. et al. Connomic reconstruction of the interior plexiform layer of the mouse retina. Nature 500, 168-174 (2013).

7.

Bock, D.D. et al. Community anatomy and in vivo physiology of visible cortical neurons. Nature 471, 177-182 (2011).

eight

Briggman, Okay.L., Helmstaedter, M. and Denk, W. Specificity of wiring within the retinal path selectivity circuit. Nature 471, 183-188 (2011).

9

Kasthuri, N. et al. Saturated reconstruction of a quantity of neocortex. Cell 162, 648-661 (2015).

ten.

Lee, WC A. et al. Anatomy and performance of an excitatory community within the visible cortex. Nature 532, 370-374 (2016).

11

Ohyama, T. et al. A multilevel multimodal circuit enhances the number of motion in Drosophila. Nature 520, 633-639 (2015).

12

Fushiki, A. et al. A circuit mechanism for the propagation of muscular contraction waves in Drosophila. eLife 5, e13253 (2016).

13

Takemura, S. Y. et al. The entire connectome of a neural substrate for movement detection "ON" in Drosophila. eLife 6, e24394 (2017).

14

Eichler, Okay. et al. The entire connectome of a middle of studying and reminiscence in an insect mind. Nature 548, 175-182 (2017).

15

Larderet, I. et al. Group of the Drosophila larval visible circuit. eLife 6, e28387 (2017).

16

Randel, N. et al. Neural connectome of a sensorimotor circuit for visible navigation. eLife Three, e02730 (2014).

17

Ryan, Okay., Lu, Z. and Meinertzhagen, IA The connectome of the central nervous system of a tadpole larva of Ciona intestinalis (L.) highlights the rigidity within the mind of a rope brother . eLife 5, e16962 (2016).

18

Varshney, L.R., Chen, B.L., Paniagua, E., Corridor, D.H. & Chklovskii, D.B. Structural properties of the neural community of Caenorhabditis elegans. PLOS Comput. Biol. 7, e1001066 (2011).

19

Ahn, Y.-Y., Jeong, H. and Kim, B. J. Price of cabling within the group of a organic neural community. Physica A 367, 531-537 (2006).

20

Chen, B.L., Corridor, D.H. & Chklovskii, D.B. Optimization of wiring can join neural construction and performance. Proc. Natl Acad. Sci. USA 103, 4723-4728 (2006).

21

Wang, I. E. & Clandinin, T. R. Affect of the economics of wiring on the evolution of the nervous system. Curr. Biol. 26, R1101 to R1108 (2016).

22

Gushchin, A. and Tang, A. Minimization of the whole size of the C. elegans neural community: a constrained optimization method. PLoS ONE 10, e0145029 (2015).

23

Carmel, L., D. Harel and Koren, Y. Combining hierarchy and vitality to attract oriented graphs. IEEE Trans. Screw. Comput. Graphic. 10, 46-57 (2004).

24

Grey, J.M., Hill, J.J. and Bargmann, C. I. A navigation circuit in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184-3191 (2005).

25

Zou, W. et al. Polymodal responses in C. elegans phasmid neurons are based mostly on a number of intracellular and intercellular signaling pathways. Sci. Rep. 7, 42295 (2017).

26

Hart, C., Kass, J., Shapiro, J.E. and Kaplan, J.M.. Distinct signaling pathways mediate tactile and osmosensory responses in a polymodal sensory neuron. J. Neurosci. 19, 1952-1958 (1999).

27

Pereira, L. et al. Mobile and regulating map of the cholinergic nervous system of C. elegans. eLife four, e12432 (2015).

28

Zhao, H. & Nonet, M. L. A retrograde sign is concerned within the remodeling-dependent exercise at a neuromuscular junction of C. elegans. Improvement 127, 1253-1266 (2000).

29

Kratsios, P. et al. Transcriptional coordination of synaptogenesis and neurotransmitter signaling. Curr. Biol. 25, 1282-1295 (2015).

30

Schwarz, J. & Bringmann, H. The evaluation of the ceh-24 gene from the NK2 homeobox reveals management of the left-right flip-side motor neurons throughout sleep. eLife 6, e24846 (2017).

31.

Stephens, G.J., Mesquita Bueno, M., Ryu, W.S. and Bialek, W. Emergence of very long time scales and stereotypical behaviors in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 7286-7299 (2011).

32

Stephens, G.J., Johnson-Kerner, B., Bialek, W. & Ryu, W.S. Dimensionality and behavioral dynamics of C. elegans. PLOS Comput. Biol. four, e1000028 (2008).

33

Kato, S. et al. The worldwide mind dynamics integrates the motor management sequence of Caenorhabditis elegans. Cell 163, 656-669 (2015).

34

Pierce-Shimomura, J.T., Faumont S., Gaston M., Pearson R., B.J. and Lockery, S.R. The homeobox lim-6 gene is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698 (2001).

35

Johnston, R.J.J., Chang .S., Etchberger, J.F., Ortiz, C.O. & Hobert, O. MicroRNAs appearing in a double adverse suggestions loop to regulate a destiny choice of neuronal cells. Proc. Natl Acad. Sci. USA 102, 12449-12454 (2005).

36

Emmons, S. W. Neuronal circuits of sexual conduct in Caenorhabditis elegans. Annu. Rev. Neurosci. 41, 349-369 (2018).

37

Sherlekar, A. L. et al. The male C. elegans exerts directional management throughout mating by means of a cholinergic regulation of management interneurons shared by intercourse. PLoS ONE eight, e60597 (2013).

38

Koo, PK, Bian, X., Sherlekar, AL, Bunkers, MR & Lints, R. The robustness of male sexual conduct of Caenorhabditis elegans is determined by the distributed properties of sensory neurons within the rays and their launch by means of central and particular targets to the person. J. Neurosci. 31, 7497-7510 (2011).

39

Ryan, D.A. et al. Intercourse, age and starvation regulate behavioral prioritization by dynamically modulating the expression of chemoreceptors. Curr. Biol. 24, 2509-2517 (2014).

40

Hilbert, Z. A. and Kim, D. H. Sexually dimorphic management of gene expression in sensory neurons regulates the decisional conduct of C. elegans. eLife 6, e21166 (2017).

41

Serrano-Saiz, E. et al. An atlas of neurotransmitters of the male nervous system Caenorhabditis elegans reveals the usage of sexually dimorphic neurotransmitters. Genetics 206, 1251-1269 (2017).

42

Oren-Suissa, M., Bayer, E.A. & Hobert, O. Pruning neuronal synapses by intercourse in Caenorhabditis elegans. Nature 533, 206-211 (2016).

43

Barrios, A., Ghosh, R., Fang, C., Emmons, S.W. and Barr, M.M. Neuropeptide signaling PDF-1 modulates a neural circuit for associate searching for conduct in C. elegans. Nat. Neurosci. 15, 1675-1682 (2012).

44

Jang, H. et al. The neuromodulator state and gender specify different behaviors by way of antagonistic synaptic pathways in C. elegans. Neuron 75, 585-592 (2012).

45

Hart, M.P. & Hobert, O. Neurexin management the plasticity of a mature, sexually dimorphic neuron. Nature 553, 165-170 (2018).

46

Toth, M.L. et al. Neurite shoot and deterioration of the synapse within the growing old nervous system of Caenorhabditis elegans. J. Neurosci. 32, 8778-8790 (2012).

47

Stern, S., Kirst, C. and Bargmann, C. I. Neuromodulatory management of long-term behavioral patterns and individuality throughout growth. Cell 171, 1649-1662 (2017).

48.

Goodman, M.B., Corridor, D.H., Avery, L. & Lockery, S.R. Energetic currents regulate sensitivity and dynamic vary in C. elegans neurons. Neuron 20, 763-772 (1998).

49

Hendricks, M., H., H., Maffey, N. and Zhang, Y. Dynamics of compartmentalized calcium in a head movement coded by an interneuron of C. elegans. Nature 487, 99-103 (2012).

50

LeBoeuf, B. & Garcia, L. Caenorhabditis elegans, a male copulation circuit incorporating sex-shared defecation parts to advertise intromission and sperm switch. G3 (Bethesda) 7, 647-662 (2017).

51.

Chalfie, M. et al. The neural circuit for sensitivity to the touch in Caenorhabditis elegans. J. Neurosci. 5, 956-964 (1985).

52

Jee, C., Goncalves, J. F., LeBoeuf, B. and Garcia, L. R. The CRF-like SEB-Three receptor in frequent sexual interneurons potentiates stress administration and copy drive in C. elegans. Nat. Widespread. 7, 11957 (2016).

53

Hardaker, L.A., E. Singer, E., Kerr, R., Zhou, G. & Schafer, W.R. Serotonin modulates locomotor conduct and coordinates egg-laying and egg motion in Caenorhabditis elegans. J. Neurobiol. 49, 303-313 (2001).

54

Garrison, J. L. et al. Oxytocin / vasopressin-related peptides play an previous position in reproductive conduct. Science 338, 540-543 (2012).

55

Barrios, A., Nurrish, S. and Emmons, S.W. Sensory regulation of the analysis conduct of male C. elegans companions. Curr. Biol. 18, 1865-1871 (2008).

56.

Sammut, M. et al. Glia-derived neurons are required for sex-specific studying in C. elegans. Nature 526, 385-390 (2015).

57

Sakai, N. et al. A sexually conditioned chemosensory conduct swap in C. elegans. PLoS ONE eight, e68676 (2013).

58.

Narayan, A. et al. Contrasting responses in a single class of neurons permit sex-specific attraction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1392 to E1401 (2016).

59

Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).

60.

Sulston, J.E., Albertson, D.G. and Thomson, J.N. The male Caenorhabditis elegans: postembryonic growth of non-gonadal constructions. Dev. Biol. 78, 542-576 (1980).

61.

Peachey, L. D. Skinny sections. I. A research of chopping thickness and bodily distortion produced throughout microtomy. J. Biophys. Biochem. Cytol. four, 233-242 (1958).

62

Xu, M. et al. Assembling computer-assisted connectomes from electron micrographs: software to Caenorhabditis elegans. PLoS ONE eight, e54050 (2013).

63.

Duerr, J.S., Gaskin, J. and Rand, J.B. Neurons recognized in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. A m. J. Physiol. Cell Physiol. 280, C1616 to C1622 (2001).

64.

Desbois, M., Cook dinner, S.J., Emmons, S.W. & Bülow, H.E. Directional trans-synaptic labeling of particular neuronal connections in dwell animals. Genetics 200, 697-705 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *