Nature News

Modulation of the cardiac receptor of ryanodine 2 by calmodulin


Fabiato, A. Calcium-induced calcium launch from the cardiac sarcoplasmic reticulum. A m. J. Physiol. 245, C1-C14 (1983).


Nakai, J. et al. Major construction and purposeful expression of calcium channel cDNA / ryanodine cardiac receptor. FEBS Lett. 271, 169-177 (1990).


Otsu, Ok. et al. Molecular cloning of the cDNA coding for the Ca2 + launch channel (ryanodine receptor) from the sarcoplasmic reticulum of the rabbit coronary heart muscle. J. Biol. Chem. 265, 13472-13483 (1990).


Rodney, G. G., Williams, B.Y., Strasburg, G.M., Beckingham, Ok. & Hamilton, S.L. Regulation of RYR1 exercise by Ca2 + and calmodulin. Biochemistry 39, 7807-7812 (2000).


Timerman, A. P. et al. The canine cardiac sarcoplasmic reticulum ryanodine receptor is related to a novel FK-506 binding protein. Biochem. Biophys. Res. Widespread. 198, 701-706 (1994).


Yamaguchi, N., L., L., Pasek, A., Evans, Ok., E., and Meissner, G. Molecular foundation of calmodulin binding to the Ca2 + launch channel of the cardiac muscle (receptor of the ryanodine). J. Biol. Chem. 278, 23480-23486 (2003).


Laitinen, P.J. et al. Mutations of the ryanodine cardiac receptor (RyR2) gene in polymorphic familial tachycardia. Circulation 103, 485-490 (2001).


Medeiros-Domingo, A. et al. Ryanodine / calcium receptor-releasing channel encoded by RYR2 in sufferers beforehand recognized with both catecholaminergic polymorphic ventricular tachycardia or exercise-induced lengthy QT syndrome: a complete evaluation of mutations in studying frames open. Jam. Coll. Cardiol. 54, 2065-2074 (2009).


Priori, S.G. & Chen, S.R. Hereditary dysfunction of the manipulation of sarcoplasmic reticulum in Ca 2+ and arrhythmogenesis. Circ. Res. 108, 871-883 (2011).


Priori, S. G. et al. Mutations within the ryanodine cardiac receptor gene (hRyR2) are on the foundation of catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196-200 (2001).


Hoeflich, Ok. P. and Ikura, M. Calmodulin in motion: range of mechanisms for recognition and activation of targets. Cell 108, 739-742 (2002).


Babu, Y. S. et al. Three-dimensional construction of calmodulin. Nature 315, 37-40 (1985).


Copley, R.R., Schultz, J., Ponting, C.P. and Bork, P. Households of Proteins in Multicellular Organisms. Curr. Opin. Struct. Biol. 9, 408-415 (1999).


Balshaw, D.M., Xu, L., Yamaguchi, N., Pasek, D.A. and Meissner, G. Calmodulin binding and inhibition of the calcium channel of the cardiac muscle (ryanodine receptor). J. Biol. Chem. 276, 20144-20153 (2001).


Moore, C.P. et al. Apocalmodulin and calmodulin Ca2 + bind to the identical area on the Ca2 + launch channel of skeletal muscle. Biochemistry 38, 8532-8537 (1999).


Tripathy, A., L., L., Mann, G. and Meissner, G. Activation and inhibition of calmodulin of the skeletal muscle launch channel Ca2 + (ryanodine receptor). Biophys. J. 69, 106-119 (1995).


Fruen, B.R., Bardy, J.M., Byrem, T.M., Strasburg, G.M. and Louis, C.F. Differential Ca2 + Sensitivity of Skeletal and Cardiac Muscle Ryanodine Receptors within the Presence of Calmodulin. A m. J. Physiol. Cell Physiol. 279, C724- C733 (2000).


Tian, ​​X., Y. Tang, Y. Liu, R., Wang and S. R. Calmodulin modulate the termination threshold of Ca2 + launch by ryanodine cardiac receptors. Biochem. J. 455, 367-375 (2013).


Hino, A. et al. The improved binding of calmodulin to the ryanodine receptor corrects contractile dysfunction in failing hearts. Cardiovasc. Res. 96, 433-443 (2012).


Lavorato, M. et al. The dyads content material is diminished in mouse cardiac myocytes whose regulation of calmodulin by RyR2 is impaired. J. Muscle Res. Cell Motil. 36, 205-214 (2015).


Yamaguchi, N. et al. Cardiac hypertrophy related to altered regulation of the cardiac receptor of ryanodine by calmodulin and S100A1. A m. J. Physiol. Coronary heart Circ. Physiol. 305, H86 to H94 (2013).


Yamaguchi, N., N. Takahashi, L., Smithies, O. and Meissner, G. Early cardiac hypertrophy in mice whose regulation of calmodulin was impaired within the Ca-channel of cardiac muscle. J. Clin. Make investments. 117, 1344-1353 (2007).


Kato, T. et al. Correction of impaired binding of calmodulin to RyR2 as a brand new therapy of deadly arrhythmia in overloaded coronary heart failure. Coronary heart rhythm 14, 120-127 (2017).


Huang, X., Fruen, B., Farrington, D.T., Wagenknecht, T. and Liu, Z. Calmodulin-binding websites on skeletal and cardiac receptors of ryanodine. J. Biol. Chem. 287, 30328-30335 (2012).


Samsó, M. & Wagenknecht, T. Apocalmodulin and Ca2 + -calmodulin bind to neighboring websites on the ryanodine receptor. J. Biol. Chem. 277, 1349-1353 (2002).


Wagenknecht, T. et al. Areas of the calmodulin and FK506 binding protein on the three-dimensional structure of the skeletal muscle ryanodine receptor. J. Biol. Chem. 272, 32463-32471 (1997).


Yamaguchi, N., Xin, C. and Meissner, G. Regulatory area identification of apocalmodulin and Ca2 + within the skeletal muscle Ca2 + launch channel, ryanodine receptor. J. Biol. Chem. 276, 22579-22585 (2001).


Maximciuc, A.A., Putkey, J.A., Shamoo, Y. & Mackenzie, Ok.R. A calmodulin advanced with a ryanodine receptor goal reveals a brand new versatile binding mode. Construction 14, 1547-1556 (2006).


Maune, J.F., Klee, C.B. and Beckingham, Ok. Conformational and conformational change of Ca2 + in two units of level mutations of particular person Ca2 + calmodulin binding websites. J. Biol. Chem. 267, 5286-5295 (1992).


Peng, W. et al. Structural foundation of RyR2 sort 2 receptor triggering mechanism for ryanodine. Science 354, AH5324 (2016).


Georges, A. et al. Structural foundation for synchronization and activation of RyR1. Cell 167, 145-157 (2016).


Wei, R. et al. Structural understanding of Ca2 + activated RyR1 long-range allosteric channel regulation. Cell Res. 26, 977-994 (2016).


Wang, C. et al. Structural analyzes of the Ca2 + / CaM interplay with the C-terminal ends of the NaV channel reveal calcium-dependent regulatory mechanisms. Nat. Widespread. 5, 4896 (2014).


Wang, C., Chung, B.C., Yan, H., Lee, S.Y. and Pitt, G.S. Crystalline construction of the ternary advanced of a C-terminal area of NaV, a homologous issue of fibroblast progress issue and calmodulin. Construction 20, 1167-1176 (2012).


Jurado, L.A., Chockalingam, P.S. & Jarrett, H.W. Apocalmodulin. Physiol. Rev. 79, 661-682 (1999).


Rodney, G. G. et al. The binding of calcium to calmodulin ends in an N-terminal shift of its binding website on the ryanodine receptor. J. Biol. Chem. 276, 2069-2074 (2001).


Bai, X.C., Yan, Z., Wu, J., Li, Z. and Yan, N. The central area of RyR1 is the transducer for long-range allosteric triggering of the channel opening. Cell Res. 26, 995-1006 (2016).


Brohus, M., Søndergaard, M.T., Chen, S.W.W., van Petegem, F. & Overgaard, M.T. T. Calodulin Ca2 + -dependent binding to the binding domains of calmodulin to the ryanodine cardiac receptor (RyR2). Biochem. J. 476, 193-209 (2019).


Xiao, B. et al. Characterization of a novel phosphorylation website of PKA, serine-2030, reveals no PKA hyperphosphorylation of the cardiac receptor of ryanodine in canine coronary heart failure. Circ. Res. 96, 847-855 (2005).


Fruen, B.R. et al. Regulation of isoforms of RYR1 and RYR2 Ca2 + launch channels by Ca2 + insensitive mutants of calmodulin. Biochemistry 42, 2740-2747 (2003).


Good, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: program for analyzing pore dimensions of ion channel structural fashions. J. Mol. Graphic. 14, 354-360 (1996).


Fischer, R. et al. A number of divergent mRNAs code for a single human calmodulin. J. Biol. Chem. 263, 17055-1762 (1988).


Kortvely, E. & Gulya, Ok. Calmodulin and numerous methods to control its exercise. Life Sci. 74, 1065-1070 (2004).


Sasagawa, T. et al. Full amino acid sequence of calmodulin of the human mind. Biochemistry 21, 2565-2569 (1982).


Hirano, H., Kobayashi, J. & Matsuura, Y. Karyopherin Kap121p and Kap60p buildings associated to the nuclear pore concentrating on area of the SUMO Ulp1p protease. J. Mol. Biol. 429, 249-260 (2017).


Paknejad, N. & Hite, R. Ok. Structural foundation for the regulation of inositol trisphosphate receptors by Ca2 + and IP3. Nat. Struct. Mol. Biol. 25, 660-668 (2018).


Fan, X. et al. Willpower of the near-focussed quasi-atomic decision construction with Cs corrected cryo-EM volta section plate. Construction 25, 1623-1630 (2017).


Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for the reconstruction of a single particle on a FEI Tecnai electron microscope. J. Struct. Biol. 150, 69-80 (2005).


Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).


Grant, T. & Grigorieff, N. Measurement of optimum publicity for single-particle cryo-EM with assistance from a 2.6 Å reconstruction of VP6 rotavirus. eLife four, e06980 (2015).


Zhang, Ok. Gctf: Actual-time willpower and correction by the FCT. J. Struct. Biol. 193, 1-12 (2016).


Kimanius, D., Forsberg, B.O., Scheres, S.H. and Lindahl, E. Accelerated willpower of the cryo-EM construction with parallelization utilizing GPUs in RELION-2. eLife 5, e18722 (2016).


Hu, M. et al. Particle filter body for sturdy cryo-EM 3D reconstruction. Nat. Strategies 15, 1083-1089 (2018).


Rosenthal, P. B. & Henderson, R. Optimum willpower of particle orientation, absolute hand loss and distinction in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).


Chen, S. et al. Excessive-resolution noise substitution to measure over-adjustment and validate decision in 3D single-particle electron cryomicroscopy construction willpower. Ultramicroscopy 135, 24-35 (2013).


Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605-1612 (2004).


Emsley, P., Lohkamp, ​​B., Scott, W. G. and Cowtan, Ok. Traits and growth of Coot. Acta Crystallogr. D 66, 486-501 (2010).


Yan, Z. et al. Construction of rabbit ryanodine receptor RyR1 at a decision near the atom. Nature 517, 50-55 (2015).


Adams, P.D. et al. PHENIX: a whole system primarily based on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).


Palmer, A.E., Jin, C., Reed, J.C. and Tsien, R.Y. Bcl-2 mediated alterations of endoplasmic reticulum Ca2 + analyzed with an improved genetically encoded fluorescent sensor. Proc. Natl Acad. Sci. USA 101, 17404-17409 (2004).


Jones, P. P. et al. Measurements of Ca2 + within the endoplasmic reticulum reveal that ryanodine cardiac receptor mutations associated to cardiac arrhythmia and sudden dying modify the Ca2 + launch threshold induced by storage overload. Biochem. J. 412, 171-178 (2008).


Jiang, D. et al. The elevated Ca2 + launch induced by retailer overload and channel sensitivity to Ca 2+ luminal activation are frequent defects of RyR2 mutations associated to ventricular tachycardia and sudden dying. Circ. Res. 97, 1173-1181 (2005).


Fabiato, A. & Fabiato, F. Calculator packages for calculating the composition of options containing a number of metals and ligands used for experiments on film-coated muscle cells. J. Physiol. 75, 463-505 (1979).

Leave a Reply

Your email address will not be published. Required fields are marked *