Nature News

Polaroid of Floquet in interplay

1.

Birnbaum, Okay.M. et al. Blockade of photons in an optical cavity with a trapped atom. Nature 436, 87-90 (2005).

2

Chang, D.E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics – photon by photon. Nat. Photon. eight, 685-694 (2014).

three

Carusotto, I. & Ciuti, C. Quantum mild fluids. Rev. Mod. Phys. 85, 299-366 (2013).

four

Raimond, J.M., Brown, M. and Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565-582 (2001).

5

Duan, L.-M., Lukin, M., Cirac, J.I. and Zoller, P. Lengthy-distance quantum communication with atomic complexes and linear optics. Nature 414, 413-418 (2001).

6

Kimble, H. J. Quantum Web. Nature 453, 1023-1030 (2008).

7.

Saffman, M., Walker, T. G. and Mølmer, Okay. Quantum info on Rydberg atoms. Rev. Mod. Phys. 82, 2313-2363 (2010).

eight

Peyronel, T. et al. Single-photon nonlinear quantum optics activated by strongly interacting atoms. Nature 488, 57-60 (2012).

9

Dudin, Y., Li, L., Bariani, F. and Kuzmich, A. Statement of coherent oscillations of Rabi with a number of our bodies. Nat. Phys. eight, 790-794 (2012).

ten.

Tiarks, D., Baur, S., Schneider, Okay., S. Dürr and S. Rempe, G. Single-photon transistor utilizing Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

11

Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. and Hofferberth, S. Single photon transistor mediated by interactions between Rydberg states. Phys. Rev. Lett. 113, 053601 (2014).

12

Thompson, J. D. et al. Collisions protected by symmetry between strongly interacting photons. Nature 542, 206-209 (2017).

13

Guerlin, C., E. Brion, E. Esslinger, T. and Mølmer, Okay. Cavity-based quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010).

14

Jia, N. et al. A polaritic quantum level in robust interplay. Nat. Phys. 14, 550-554 (2018).

15

Georgakopoulos, A., Sommer, A. and Simon, J. Interplay principle of Rydberg polaritons. Quantum Sci. Technol. four, 014005 (2018).

16

Silveri, M.P., Tuorila, J.A., Thuneberg, E.V. & Paraoanu, G.S. Quantum Techniques below Frequency Modulation. Rep. Prog. Phys. 80, 056002 (2017).

17

Eckardt, A. Atomic Quantum Gases in Periodically Managed Optical Networks. Rev. Mod. Phys. 89, 011004 (2017).

18

Fleischhauer, M., Imamoglu, A. and Marangos, J. Transparency induced by electromagnetism: optics in a coherent medium. Rev. Mod. Phys. 77, 633-673 (2005).

19

Douglas, J. S. et al. Multibody quantum fashions with chilly atoms coupled to photonic crystals. Nat. Photon. 9, 326-331 (2015).

20

Schine, N., A. Ryou, A. Gromov, A. Sommer and Simon, J. Landau artificial ranges for photons. Nature 534, 671-675 (2016).

21

Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. and Imamoğlu, A. Electrically tunable gauge potential for electrons for polaritons. Nat. Widespread. eight, 14540 (2017).

22

Schine, N., Chalupnik, M., Can, T., Gromov, A. and Simon, J. Electromagnetic and gravitational responses of the photonic ranges of Landau. Nature 565, 173-179 (2019).

23

Strand, J.D. et al. First-order sideband transitions with qubits of uneven flux-driven transmons. Phys. Rev. B 87, 220505 (2013).

24

Naik, R. et al. Random entry quantum info processors utilizing quantum electrodynamics of multimode circuits. Nat. Widespread. eight, 1904 (2017).

25

Beaudoin, F., da Silva, MP, Dutton, Z. and Blais, A. First-order sidebands within the QED circuit utilizing a qubit frequency modulation. Phys. Rev. A 86, 022305 (2012).

26

Beaufils, Q. et al. Affiliation of radio-frequency molecules: a Feshbach resonance assisted. EUR. Phys. J. D 56, 99-104 (2010).

27

Ningyuan, J. et al. Statement and characterization of Rydberg polaritons within the cavity. Phys. Rev. A 93, 041802 (2016).

28

Zeuthen, E., Gullans, M.J., Maghrebi, M.F. and Gorshkov, A. V. Correlated photon dynamics within the dissipative medium of Rydberg. Phys. Rev. Lett. 119, 043602 (2017).

29

Ivanov, P.A., Letscher, F., Simon, J. & Fleischhauer, M.Adisabatic flux insertion and Laughlin states development of Rydberg polaritons within the cavity. Phys. Rev. A 98, 013847 (2018).

30

Dutta, S. & Mueller, E. Constant technology of photonic fractional quantum Corridor states in a cavity and seek for anyonic quasiparticles. Phys. Rev. A 97, 033825 (2018).

31.

Sommer, A., Buchler, H.P. and Simon, J. Quantum crystals and Laughlin droplets of Rydberg polaritons within the cavity. Preprint on https://arxiv.org/abs/1506.00341 (2015).

32

Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

33

Norcia, M.A., Cline, J.R. Okay., Bartolotta, J.P., Holland, M.J. and Thompson, J. Okay. Slim-band laser cooling by adiabatic switch. New J. Phys. 20, 023021 (2018).

34

Ma, R. et al. Photon assisted tunneling in a strongly correlated polarized Bose gasoline. Phys. Rev. Lett. 107, 095301 (2011).

35

Parker, C.V., Ha, L.-C. & Chin, C. Direct remark of efficient ferromagnetic domains of chilly atoms in a shaken optical community. Nat. Phys. 9, 769-774 (2013).

36

Clark, L.W., Feng, L. & Chin, C. Common spatio-temporal scale symmetry within the dynamics of bosons by a quantum section transition. Science 354, 606-610 (2016).

37

Daley, A.J. and Simon, J. Three-body environment friendly photon tunneling interactions in an optical community. Phys. Rev. A 89, 053619 (2014).

38

Meinert, F., Mark, M.J., Lauber, Okay., Daley, A.J. and Nägerl, H.-C. Tunnel engineering of tunnel impact correlated within the Bose – Hubbard mannequin with ultra-cold atoms. Phys. Rev. Lett. 116, 205301 (2016).

39

Clark, L.W., Gaj, A., Feng, L. and Chin, C. Collective emission of fabric jets from entrained Bose-Einstein condensates. Nature 551, 356-359 (2017).

40

Lignier, H. et al. Dynamic management of fabric wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007).

41

Struck, J. et al. Adjustable potential gauge for impartial and spinless particles in pushed optical networks. Phys. Rev. Lett. 108, 225304 (2012).

42

Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultra-cold atoms in optical networks. Phys. Rev. Lett. 111, 185301 (2013).

43

Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C. and Ketterle, W. Phys. Rev. Lett. 111, 185302 (2013).

44

Tai, M.E. et al. Microscopy of the Harper-Hofstadter mannequin interacting within the boundary of the 2 our bodies. Nature 546, 519-523 (2017).

45

Clark, L. W. et al. Of density – dependent gauge fields in a Bose – Einstein condensate on the premise of micromotion management in a shaded two – dimensional community brand CNRS brand INIST Accueil / House Imprimer / Print Contact / Contact Bookmark and Share Mendeley. Phys. Rev. Lett. 121, 030402 (2018).

46

Jotzu, G. et al. Experimental realization of the topological mannequin of Haldane with ultra-cold fermions. Nature 515, 237-240 (2014).

47

Aidelsburger, M. et al. Measure the variety of Hofstadter band Chern with ultra-cold bosonic atoms. Nat. Phys. 11, 162-166 (2015).

48.

Tarnowski, M. et al. Measure the topology from the dynamics by getting the variety of Chern from a binding quantity. Nat. Widespread. 10, 1728 (2019).

49

Fläschner, N. et al. Statement of dynamic vortices after quenches in a topology system. Nat. Phys. 14, 265-268 (2018).

Leave a Reply

Your email address will not be published. Required fields are marked *