Nature News

Conformational transitions of a receptor of neurotensin 1 – Gi1 advanced


Carraway, R. & Leeman, S. E. Isolation of a brand new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248, 6854-6861 (1973).


Vincent, J.P., Mazella, J. & Kitabgi, P. Neurotensin and neurotensin receptors. Tendencies Pharmacol. Sci. 20, 302-309 (1999).


Balls, M., Li, Z., Smith, Ok., Fredrickson, P. & Richelson, E. Varied roles of neurotensin agonists within the central nervous system. Entrance. Endocrinol. four, 36 (2013).


Wu, Z., D. Martinez-Fong, J. Trédaniel and P. Forgez, Neurotensin and its excessive affinity receptor 1 as a possible pharmacological goal within the therapy of most cancers. Entrance. Endocrinol. three, 184 (2013).


Mustain, W.C., Rychahou, P.G. & Evers, B.M. The function of neurotensin in physiological and pathological processes. Curr. Opin. Endocrinol. Overweight diabetics. 18, 75-82 (2011).


Schroeder, L. & Leinninger, G. M. Position of central neurotensin within the regulation of food regimen: implications for the event and therapy of physique weight problems. Biochim. Biophys. Acta 1864, 900-916 (2018).


Tanaka, Ok., Masu, M. and Nakanishi, S. Construction and purposeful expression of the cloned rat neurotensin receptor. Neuron four, 847-854 (1990).


Chalon, P. et al. Molecular cloning of a levocabastine-sensitive neurotensin binding website. FEBS Lett. 386, 91-94 (1996).


Mazella, J. et al. Construction, purposeful expression, and mind localization of the levocabastine-sensitive neurotenin / neuromedin N receptor from mouse mind. J. Neurosci. 16, 5613-5620 (1996).


Mazella, J. et al. The 100 kDa neurotensin receptor is gp95 / sortilin, a non-G protein coupled receptor. J. Biol. Chem. 273, 26273-26276 (1998).


Kitabgi, P. Concentrating on Neurotensin Receptors with Agonists and Antagonists for Therapeutic Functions. Curr. Opin. Drug Discov. Devel. 5, 764-776 (2002).


Besserer-Offroy, É. et al. The signaling signaling of the kind 1 neurotensin receptor with endogenous ligands. EUR. J. Pharmacol. 805, 1-13 (2017).


White, J.F. et al. Construction of the neurotensin receptor certain to the agonist. Nature 490, 508-513 (2012).


Egloff, P. et al. Construction of the signaling competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 111, E655 to E662 (2014).


Krumm, B.E., White, J.F., Shah, P. and Grisshammer, R. Structural stipulations for the activation of G protein by the neurotensin receptor. Nat. Frequent. 6, 7895 (2015).


Krumm, B.E. et al. Construction and dynamics of a constitutively energetic neurotensin receptor. Sci. Rep. 6, 38564 (2016).


Ballesteros, J.A. and Weinstein, H. in Receptor Molecular Biology, vol. 25 (Sealfon, S.C.), Ch 19 (Elsevier, 1995).


Dubuc, I. et al. JMV 449: pseudopeptide analogue of neurotensin (Eight-13) with extraordinarily potent and chronic hypothermic and analgesic results in mice. EUR. J. Pharmacol. 219, 327-329 (1992).


Koehl, A. et al. Construction of the μ-opioid-Gi receptor protein advanced. Nature 558, 547-552 (2018).


Noble, A.J. et al. Discount of the consequences of particle adsorption on the air-water interface in cryo-EM. Nat. Strategies 15, 793-795 (2018).


Rasmussen, S.G. et al. Construction of a nanobody-stabilized energetic state of the β2 adrenoceptor. Nature 469, 175-180 (2011).


Huang, W. et al. Structural data on the activation of μ-opioid receptors. Nature 524, 315-321 (2015).


Rasmussen, S.G. et al. Crystalline construction of the β2 receptor adrenergic receptor advanced – Gs. Nature 477, 549-555 (2011).


Capper, M.J. & Wacker, D. How the ever-present household of GPCR receptors selectively prompts signaling pathways. Nature 558, 529-530 (2018).


Dror, R. O. et al. Mechanism of activation of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684-18689 (2011).


Latorraca, N.R., Venkatakrishnan, A.J. and Dror, R.O.GPCR dynamics: shifting constructions. Chem. Rev. 117, 139-155 (2017).


Draper-Joyce, C.J. et al. Construction of human-Gi receptor advanced of adenosine A1 certain to adenosine. Nature 558, 559-563 (2018).


García-Nafría, J., Nehmé R., Edwards, P.C. and Tate, C. G. Cryogenic construction of the serotonin 5-HT1B receptor coupled to the heterotrimer Go. Nature 558, 620-623 (2018).


Wall, M.A. et al. The construction of the protein G heterotrimer Giα1β1γ2. Cell 83, 1047-1058 (1995).


Solar, D. et al. Seek for the activation of Gαi1 protein on the decision of a single amino acid. Nat. Struct. Mol. Biol. 22, 686-694 (2015).


Thomas, T.C., Schmidt, C.J. and Neer, E.J.G protein alpha subunit: The conserved cysteine ​​mutation identifies a subunit contact floor and alters the affinity of the GDP. Proc. Natl Acad. Sci. USA 90, 10295-10299 (1993).


Iiri, T., Herzmark, P., Nakamoto, J.M., van Dop, C. and Bourne, H. R. Fast launch of GDP by Gsα in sufferers with weight acquire and lack of endocrine perform. Nature 371, 164-168 (1994).


Posner, B.A., Mixon, M.B., Wall, M.A., Sprang, S.R. & Gilman, A.G. The Gial mutant A326S as approximation of the receptor-related state. J. Biol. Chem. 273, 21752-21758 (1998).


Grishina, G. & Berlot, C. H. A surface-exposed Gsα area wherein substitutions lower receptor-mediated activation and improve receptor affinity. Mol. Pharmacol. 57, 1081-1092 (2000).


Hu, J. et al. Structural foundation of receptor-protein G interactions coupled to G. Nat protein. Chem. Biol. 6, 541-548 (2010).


Hillenbrand, M., Schori, C., Schöppe, J. and Plückthun, A. Complete evaluation of the heterotrimeric G protein advanced variety and their interactions with GPCRs in resolution. Proc. Natl Acad. Sci. USA 112, E1181 to E1190 (2015).


Inoue, A. et al. Illumination of the GPC protein G coupling selectivity. Cell 177, 1933-1947 (2019).


Sounier, R. et al. Propagation of conformational modifications throughout opioid receptor μ activation. Nature 524, 375-378 (2015).


Gregorio, G. G. et al. Single molecule evaluation of the effectiveness of the ligand within the activation of the protein β2AR – G. Nature 547, 68-73 (2017).


Van Eps, N. et al. G- and G-coupled GPCRs present completely different modes of G protein binding. Proc. Natl Acad. Sci. USA 115, 2383-2388 (2018).


Dror, R. O. et al. Structural foundation for the change of nucleotides in heterotrimeric G proteins. Science 348, 1361-1365 (2015).


Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).


Zhang, Ok. Gctf: Actual-time dedication and correction by the FCT. J. Struct. Biol. 193, 1-12 (2016).


Scheres, S. H. Structurally heterogeneous cryo-EM information processing in RELION. Enzymol strategies. 579, 125-157 (2016).


Heymann, J. B. Reconstruction and validation of a single particle with the assistance of Bsoft for the problem of the cardboard. J. Struct. Biol. 204, 90-95 (2018).


Emsley, P. & Cowtan, Ok. Coot: Modeling instruments for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).


Adams, P.D. et al. PHENIX: a whole system primarily based on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).


Williams, C.J. et al. MolProbity: Extra and higher reference information for improved validation of the all-atom construction. Protein Sci. 27, 293-315 (2018).


Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605-1612 (2004).


Goddard, T. D. et al. UCSF ChimeraX: Assembly Fashionable Challenges in Visualization and Evaluation. Protein Sci. 27, 14-25 (2018).


Jacobson, M.P. et al. A hierarchical method to the prediction of the all-atom protein loop. Proteins 55, 351-367 (2004).


Jacobson, M.P., Friesner, R.A., Xiang, Z. and Honig, B. On the function of the crystalline surroundings within the dedication of protein aspect chain conformations. J. Mol. Biol. 320, 597-608 (2002).


Eswar, N. et al. Comparative modeling of protein construction utilizing MODELLER. Curr. Protoc. Protein Sci. 50, 2.9.1-2.9.31 (2007).


Ghanouni, P. et al. The impact of pH on the perform of β2 adrenergic receptors. proof of activation depending on protonation. J. Biol. Chem. 275, 3121-3127 (2000).


Ranganathan, A., Dror, O. R. & Carlsson, J. Overview of the function of Asp792.50 within the activation of β2 adrenergic receptors from molecular dynamics simulations. Biochemistry 53, 7283-7266 (2014).


Lomize, M.A., Lomize, A.L., Pogozheva, I.D. and Mosberg, H.I.OPM: database on protein orientations in membranes. Bioinformatics 22, 623-625 (2006).


Betz, R.M. Dabbling. (2018).


Vilardaga, J.P., M. Bünemann, M., Krasel, C., Castro, M. and Lohse, M.J. Measurement of the MSE activation swap of G-protein coupled receptors in dwelling cells. Nat. Biotechnol. 21, 807-812 (2003).


Lewis, G. N. A brand new precept of stability. Proc. Natl Acad. Sci. USA 11, 179-183 (1925).


Astumian, R. D. Microscopic reversibility because the organizing precept of molecular machines. Nat. Nanotechnol. 7, 684-688 (2012).


Hopkins, C.W., Le Grand, S., Walker, R.C. & Roitberg, A. E. Molecular dynamics at very long time step by distribution within the mass of hydrogen. J. Chem. Comput Concept. 11, 1864-1874 (2015).


Ryckaert, J.-P., Ciccotti, G. and Berendsen, H. J. Numerical integration of Cartesian equations of movement of a constrained system: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341 (1977).


Huang, J. & MacKerell, A.D., Jr. Drive area of additive protein any CHARMM36 atom: validation primarily based on comparability with NMR information. J. Comput. Chem. 34, 2135-2145 (2013).


Klauda, ​​J.B. et al. Replace of the CHARMM all-atom additive drive area for lipids: validation on six varieties of lipids. J. Phys. Chem. B 114, 7830-7843 (2010).


MacKerell, A.D. et al. Empirical potential any atom for molecular modeling and protein dynamics research. J. Phys. Chem. B 102, 3586-3616 (1998).


Finest, RB, Mittal, J., Feig, M. and MacKerell, AD Jr. The inclusion of results on many our bodies within the CMAP potential of the additive CHARMM protein leads to better co-operation of the formation of the α helix and the β hairpin. Biophys. J. 103, 1045-1051 (2012).


Finest, R.B. et al. Optimization of the drive area of the additive CHARMM all-atomic protein for higher sampling of the again, ψ and lateral dihedral angles 1 and χ2 of the aspect chain. J. Chem. Comput Concept. Eight, 3257-3273 (2012).


R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand and R. Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPU. 2. Mesh of express solvent particles ewald. J. Chem. Comput Concept. 9, 3878-3888 (2013).


Pearlman, D.A. et al. AMBER, a set of pc packages to use molecular mechanics, regular mode evaluation, molecular dynamics and free vitality calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Frequent. 91, 1-41 (1995).


Humphrey, W., Dalke, A. and Schulten, Ok. VMD: Visible Molecular Dynamics. J. Mol. Graphic. 14, 33-38 (1996).


Coleman, D.E. & Sprang, S.R. Giα1 Construction • GppNHp, auto-inhibition in a protein-α-substrate advanced. J. Biol. Chem. 274, 16669-16672 (1999).


Grundmann, M. et al. Absence of beta-arrestin signaling within the absence of energetic G proteins. Nat. Frequent. 9, 341 (2018).


Robert, X. & Gouet, P. Decrypt the important thing capabilities of protein constructions with the brand new ENDscript server. Nucleic Acids Res. 42, W320 – W324 (2014)


Hattori, M., Hibbs, R.E. and Gouaux, E. A thermostability take a look at primarily based on fluorescence detection exclusion chromatography for precrystallization screening of membrane proteins. Construction 20, 1293-1299 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *