Nature News

Dynamics of In-RNA RNA Growth in Mammalian Organs and Species

1.

Cabili, M.N. et al. The integrative annotation of huge non-coding human intergenic RNAs reveals world properties and particular subclasses. Genes Dev. 25, 1915-1927 (2011).

2

Derrien, T. et al. The GENCODE v7 catalog of human non-coding lengthy RNAs: evaluation of the construction, evolution and expression of their genes. Genome Res. 22, 1775-1789 (2012).

three

Iyer, M. Okay. et al. The panorama of lengthy non-coding RNAs within the human transcriptome. Nat. Broom. 47, 199-208 (2015).

Four

Hon, C.C. et al. An atlas of lengthy non-coding human RNAs with exact 5-ends. Nature 543, 199-204 (2017).

5

Carninci, P. et al. The transcriptional panorama of the mammalian genome. Science 309, 1559-1563 (2005).

6

Necsulea, A. et al. Evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635-640 (2014).

7.

Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue specificity of lengthy non-coding human RNAs in six mammals. Genome Res. 24, 616-628 (2014).

eight

Hezroni, H. et al. Rules of the evolution of lengthy non-coding RNAs derived from the direct comparability of transcriptomes in 17 species. Cell Rep. 11, 1110-1122 (2015).

9

Kopp, F. & Mendell, J. T. Purposeful classification and experimental dissection of lengthy non-coding RNAs. Cell 172, 393-407 (2018).

ten.

Ponting, C.P., Oliver, P.L. & Reik, W. Evolution and capabilities of lengthy non-coding RNAs. Cell 136, 629-641 (2009).

11

Ulitsky, I. Evolution to the rescue: Utilizing comparative genomics to know non-coding lengthy RNAs. Nat. Rev. Broom. 17, 601-614 (2016).

12

Necsulea, A. & Kaessmann, H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat. Rev. Broom. 15, 734-748 (2014).

13

Guttman, M. et al. The chromatin signature reveals over a thousand giant non-coding RNAs extremely conserved in mammals. Nature 458, 223-227 (2009).

14

Ulitsky, I., Shkumatava, A., Jan, C., H., Sive, H. and Bartel, D. P. Operate conserved linc RNAs within the embryonic growth of vertebrates regardless of the speedy evolution of the sequence. Cell 147, 1537-1550 (2011).

15

Sauvageau, M. et al. A number of fashions of knockout mice reveal that lincRNAs are vital for the life and growth of the mind. eLife. 2, e01749 (2013).

16

Grote, P. & Herrmann, B. G. Lengthy non-coding RNAs in organogenesis: make the distinction. Genet Traits. 31, 329-335 (2015).

17

Goff, L. A. et al. Spatio-temporal expression and transcriptional perturbations by lengthy noncoding RNAs within the mouse mind. Proc. Natl Acad. Sci. USA 112, 6855-6862 (2015).

18

Cardoso-Moreira, M. et al. Expression of Genes through the Growth of Mammal Organ Nature https://doi.org/10.1038/s41586-Zero19-1338-5 (2019).

19

Zerbino, D.R. et al. Complete 2018. Nucleic Acids Res. 46, D754 to D761 (2018).

20

Conesa, A., Nueda, M.J., Ferrer, A. and Talón, M. maSigPro: a way for considerably figuring out differential expression profiles in microarray experiments over time. Bioinformatics 22, 1096-1102 (2006).

21

Liu, S.J. et al. Genome-wide identification based mostly on CRISPRi of lengthy purposeful non-coding RNA loci in human cells. Science 355, eaah7111 (2017).

22

Mukherjee, N. et al. Integrative classification of coding and non-coding human genes in response to RNA metabolism profiles. Nat. Struct. Mol. Biol. 24, 86-96 (2017).

23

Soumillon, M. et al. Cell supply and excessive complexity mechanisms of transcriptome within the mammalian testis. Cell Rep. three, 2179-2190 (2013).

24

Guttman, M. and Rinn, J. L. Modular regulatory rules of huge non-coding RNAs. Nature 482, 339-346 (2012).

25

Andersson, R. et al. An atlas of energetic activators on various kinds of cells and human tissues. Nature 507, 455-461 (2014).

26

Kutter, C. et al. Quick rolling of non-coding lengthy RNAs and evolution of gene expression. PLoS Genet. eight, e1002841 (2012).

27

Quek, X.C. et al. lncRNAdbv2.Zero: extension of the reference database for lengthy non-coding purposeful RNAs. Nucleic Acids Res. 43, D168 to D173 (2015).

28

Melé, M. et al. The chromatin setting, transcriptional regulation and splicing distinguish linc RNAs and mRNAs. Genome Res. 27, 27-37 (2017).

29

Yevshin, I., Sharipov, R., Valeev, T., Kel, A. and Kolpakov, F. GTRD: a database of transcription issue binding websites recognized by ChIP-seq experiments. Nucleic Acids Res. 45, D61 – D67 (2017).

30

Olson, E. N. Gene regulatory networks within the evolution and growth of the center. Science 313, 1922-1927 (2006).

31.

Ruf, S. et al. Giant-scale evaluation of the regulatory structure of the mouse genome with a transposon-associated sensor. Nat. Broom. 43, 379-386 (2011).

32

Engreitz, J. M. et al. Native regulation of gene expression by ncRNA promoters, transcription and splicing. Nature 539, 452-455 (2016).

33

Amaral, P.P. et al. Genomic place conservation identifies topological anchor RNAs associated to developmental loci. Genome Biol. 19, 32 (2018).

34

Luo, S. et al. The divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18, 637-652 (2016).

35

Bester, A.C. et al. A genome-wide built-in CRISPRa method to functionalize ncRNAs in drug resistance. Cell 173, 649-664 (2018).

36

Jiang, W., Liu, Y., Liu, R., Zhang, Okay. and Zhang, Y. The ARNncRNA DEANR1 facilitates the differentiation of the human endoderm by activating the expression of FOXA2. Cell Rep. 11, 137-148 (2015).

37

Jian, X. & Felsenfeld, G. The insulin promoter in β cells of the human pancreas comes into contact with diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc. Natl Acad. Sci. USA 115, E4633 to E4641 (2018).

38

Spigoni, G., Gedressi, C. & Mallamaci, A. Regulation of Emx2 expression by antisense transcripts in murine corticocerebral precursors. PLoS ONE 5, e8658 (2010).

39

Ramos, A. D. et al. The combination of genome-wide approaches identifies the ncRNAs of grownup neural stem cells and their offspring in vivo. Cell Stem Cell 12, 616-628 (2013).

40

Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription items: current insights and future views. Nat. Rev. Broom. 17: 207-223 (2016).

41

Liu, S.J. et al. Monocellular evaluation of lengthy non-coding RNAs within the creating human neocortex. Genome Biol. 17, 67 (2016).

42

Lagarde, J. et al. Excessive-throughput annotation of full-length non-coding lengthy RNAs with long-read seize sequencing. Nat. Broom. 49, 1731-1740 (2017).

43

Li, H. et al. The format of sequence / map alignment and SAMtools. Bioinformatics 25, 2078-2079 (2009).

44

Pertea, M. et al. StringTie permits higher reconstruction of a transcriptome from seq-RNA reads. Nat. Biotechnol. 33, 290-295 (2015).

45

Trapnell, C. et al. Differential evaluation of gene expression and transcribed experiments on RNA-seq with TopHat and Cufflinks. Nat. Protocols 7, 562-578 (2012).

46

Wang, L. et al. CPAT: coding potential analysis software utilizing a non-aligned logistic regression mannequin. Nucleic Acids Res. 41, e74 (2013).

47

Washietl, S. et al. RNAcode: sturdy discrimination of coding and non-coding areas in comparative sequence knowledge. RNA 17, 578-594 (2011).

48.

Altschul, S.F., Gish, W., W. Miller, Myers, E.W. & Lipman, D.J. Primary native alignment search software. J. Mol. Biol. 215, 403-410 (1990).

49

The UniProt Consortium. UniProt: the common information base on proteins. Nucleic Acids Res. 45, D158 to D169 (2017).

50

Finn, R. D. et al. The Pfam protein household database: in direction of a extra sustainable future. Nucleic Acids Res. 44, D279 – D285 (2016).

51.

Anders, S., Pyl, P.T. and Huber, W. HTSeq: a Python framework for working with excessive throughput sequencing knowledge. Bioinformatics 31, 166-169 (2015).

52

Robinson, M.D., McCarthy, D.J. & Smyth, G.Okay. edgeR: a bioconductive software program package deal for the evaluation of differential expression of digital gene expression knowledge. Bioinformatics 26, 139-140 (2010).

53

Love, M. I., Huber, W. and Anders, S. Reasonable estimate of fold change and dispersion for seq-RNA knowledge with DESeq2. Genome Biol. 15, 550 (2014).

54

Yanai, I. et al. The mid-range genome transcription patterns reveal expression degree relationships within the human tissue specification. Bioinformatics 21, 650-659 (2005).

55

Li, L., Stoeckert, C.J. & Roos, D.S. OrthoMCL: Identification of orthologous teams for eukaryotic genomes. Genome Res. 13, 2178-2189 (2003).

56.

Duret, L., Chureau, C., Samain, S., Weissenbach, J. & Avner, P. The Xist RNA gene developed in eutherians by pseudogenization of a gene coding for a protein . Science 312, 1653-1655 (2006).

57

Hezroni, H. et al. A subset of conserved mammalian long-noncoding RNAs are fossils of genes encoding ancestral proteins. Genome Biol. 18,162 (2017).

58.

Smit, A. F. A., Hubley, R. and Inexperienced, P. RepeatMasker Open-Four.Zero. v.Four.Zero.6 http://www.repeatmasker.org (2013-2015).

59

Chen, J. et al. The evaluation of evolution in mammals reveals distinct courses of lengthy non-coding RNAs. Genome Biol. 17, 19 (2016).

60.

Quinlan, A.R. & Corridor, I.M. BEDTools: A versatile suite of utilities for evaluating genomic traits. Bioinformatics 26, 841-842 (2010).

61.

Hinrichs, A.S. et al. The us Genomic Browser Database: Replace 2006. Nucleic Acids Res. 34, D590 to D598 (2006).

62

Wucher, V. et al. FEELnc: a software for the lengthy annotation of non-coding RNA and its software to the transcriptome of the canine. Nucleic Acids Res. 45, e57 (2017).

63.

Kolde, R. pheatmap: Fairly Heatmaps. v.1.Zero.10 (2015).

64.

Hensman, J., Rattray, M. and Lawrence, N., speedy variational inference within the conjugate exponential household. Within the Advances of Neural Data Processing Programs 25 1-9 (2012).

65.

Hensman, J., Lawrence, N. D. & Rattray, M. Bayesian hierarchical modeling of the time collection of gene expression in replicates and clusters sampled irregularly. BMC Bioinformatics 14, 252 (2013).

66.

Hensman, J., Rattray, M. and Lawrence, N. D. Nonparametric speedy clustering of structured time collection. IEEE Trans. Anal mannequin. Mach. Intell. 37, 383-393 (2015).

67.

Wang, J., Vasaikar, S., Shi, Z., Greer, M. and Zhang, B. WebGestalt 2017: a extra complete, highly effective, versatile and interactive toolkit for enrichment evaluation units of genes. Nucleic Acids Res. 45 (W1), W130 to W137 (2017).

68.

Kaessmann, H. Origins, evolution and phenotypic impression of recent genes. Genome Res. 20, 1313-1326 (2010).

69

Revelle, W. Psych: Analysis procedures on character and psychology. Package deal R v.1.eight.Four https://cran.r-project.org/net/packages/psych/index.html (2017).

70.

Ebisuya, M., Yamamoto, T., Nakajima, M. and Nishida, E. Ripples of the neighboring transcription. Nat. Cell Biol. 10, 1106-1113 (2008).

71.

R Core Workforce. A: A Language and Surroundings for Statistical Computing https://www.r-project.org/ (R Basis for Statistical Computing, 2008).

72.

Wickham, H., Romain, F., Henry, L. and Müller, Okay. Dplyr: a grammar of knowledge manipulation. v.Zero.7.6 https://cran.r-project.org/net/packages/dplyr/index.html (2017).

73.

Wickham, H. tidyr: Simply cleans up knowledge with 'unfold' () capabilities v.Zero.eight.1 https://tidyr.tidyverse.org/ (2018).

74.

Wickham, H. stringr: Easy and constant wrappers for routine string operations. v.1.three.1 https://stringr.tidyverse.org/ (2018).

75.

Dowle, M. & Srinivasan, A. knowledge.desk: extension of "knowledge.body". v.1.11.Four https://cran.r-project.org/net/packages/knowledge.desk/index.html (2017).

76.

Wickham, H. ggplot2: Fashionable Graphics for Knowledge Evaluation, 2nd Version (Springer, 2016).

77.

Auguie, B. gridExtra: Varied capabilities for "grid" graphics. v.2.three https://rdrr.io/cran/gridExtra/ (2017).

78.

Wickham, H. Reworking knowledge with the transforming package deal. J. Stat. Softw. 21, 1-20 (2007).

79.

Wickham, H. The mixture-application-combination technique for knowledge evaluation. J. Stat. Softw. 40, 1-29 (2011).

80.

Le, S., Josse, J. & Husson, F. FactomineR: an R package deal for multivariate evaluation. J. Stat. Softw. 25, 1-18 (2008).

Leave a Reply

Your email address will not be published. Required fields are marked *