Nature News

Dwelling annulative π-extension polymerization for the synthesis of graphene nanoparticles

1.

Dutta, S. & Pati, S. Ok. New properties of graphene nanoribbons: a overview. J. Mater. Chem. 20, 8207-8233 (2010).

2

Li, X., Wang, X., L. Zhang, Lee, S. and Dai, H. Semiconductors of ultra-smooth graphene nanoparticles, derived from chemical substances. Science 319, 1229-1232 (2008).

three

Son, Y. W., Cohen, M. L. and Louie, S. G. Semi-metallic graphene nanoribbons. Nature 444, 347-349 (2006); Corrigendum 446, 342 (2007).

four

Yang, L., Park, C.H., Son, Y.W., Cohen, M.L. and Louie, S.G. Quasiparticle energies and forbidden bands in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

5

Ritter, Ok.A. & Lyding, J.W. Affect of edge construction on the digital properties of quantum dots and graphene nanoribbons. Nat. Mater. eight, 235-242 (2009).

6

Ma, L., Wang, J. and Ding, F. Latest advances and challenges within the synthesis of graphene nanoribbon. ChemPhysChem 14, 47-54 (2013).

7.

Segawa, Y., Ito, H. and Itami, Ok. Structurally uniform and atomically correct carbon nanostructures. Nat. Rev. Mater. 1, 15002 (2016).

eight

Chen, L., Hernandez, Y., Feng, X. & Müllen, Ok. From nanographene and graphene nanografts to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640-7654 (2012).

9

Narita, A., Feng, X. & Müllen, Ok. Ascending synthesis of chemically correct graphene nanoribbons. Chem. Rec. 15, 295-309 (2015).

ten.

Yang, X. et al. Two-dimensional graphene nanoribbons. Jam. Chem. Soc. 130, 4216-4217 (2008).

11

Cai, J. et al. Exact ascending manufacturing of graphene nanoribbons. Nature 466, 470-473 (2010).

12

Narita, A. et al. Synthesis of structurally well-defined graphene nanoribbons that may be processed within the liquid section. Nat. Chem. 6, 126-132 (2014).

13

Ruffieux, P. et al. Floor synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489-492 (2016).

14

Talirz, L. et al. Synthesis and floor characterization of chair graphene nanoribbons 9 atoms huge. ACS Nano 11, 1380-1388 (2017).

15

Sakaguchi, H., Tune, S., Kojima, T. and Nakae, T. Selective development directed by homochiral polymerization of graphene nanoribbons. Nat. Chem. 9, 57-63 (2017).

16

Jordan, R.S. et al. Synthesis of graphene nanoribbons through topochemical polymerization and subsequent aromatization of a diacetylene precursor. Chem 1, 78-90 (2016).

17

Jordan, R.S. et al. Synthesis of armchair graphene nanoribbons N = eight from 4 totally different polydiacetylenes. Jam. Chem. Soc. 139, 15878-15890 (2017).

18

Yang, W., Lucotti, A., Tommasini, M. and Chalifoux, W. A. ​​Upward synthesis of soluble and slender graphene nanoribbons with the assistance of alkyne benzannulations. Jam. Chem. Soc. 138, 9137-9144 (2016).

19

Ito, H., Ozaki, Ok. and Itami, Ok. N-extension cancellation (APEX): a response permitting fast entry to aromatics, heteroaromatics and fused nanographenes. Angew. Chem. Int. Ed. 56, 11144-11164 (2017).

20

Pouliot, J.-R., Grenier, F., Blaskovits, J.T., Beaupré, S. and Leclerc, M. Direct (hetero) arylation polymerization: simplicity for the synthesis of conjugated polymers. Chem. Rev. 116, 14225-14274 (2016).

21

Teo, Y.C., Lai, H.W.H. and Xia, Y. Synthesis of Polymers of Scale: Developments, Challenges and Alternatives. Chemistry 23, 14101-14112 (2017).

22

Ozaki, Ok., Ok. Kawasumi, M. Shibata, Ito, H. and Itami, Ok. N-selective n-annulative extension of the Ok area at one time for the synthesis and functionalization of nanographenes. Nat. Frequent. 6, 6251 (2015).

23

Yano, Y., Ito, H., Segawa, Y. and Itami, Ok. Helical twisted tetracene: synthesis, crystal construction and photophysical properties of hexabenzo[a,c,fg,j,l,op]tetracene. Synlett 27, 2081-2084 (2016).

24

Yokozawa, T. and Ohta, Y. Transformation of stepwise polymerization into living-chain development polymerization. Chem. Rev. 116, 1950-1968 (2016).

25

Huang, Y. et al. Graphene nanoribbons functionalized with poly (ethylene oxide) with glorious processability in answer. Jam. Chem. Soc. 138, 10136-10139 (2016).

26

Webster, O. W. Stay polymerization strategies. Science 251, 887-893 (1991).

27

Ozaki, Ok. et al. One-step n-ring extension of alkynes with dibenzosiloles or dibenzogermoles by palladium / o-chloranil catalysis. Angew. Chem. Int. Ed. 56, 1361-1364 (2017).

28

D. Prezzi, D. Varsano, A. Ruini, A. Marini and A. Molinari, E. Optical properties of graphene nanoribbons: the function of the consequences of a number of our bodies. Phys. Rev. B 77, 041404 (2008).

29

Vandescuren, M., Hermet, P., Meunier, V., Henrard, L. and Lambin, P. Theoretical examine of vibratory edge modes in graphene nanoribbons. Phys. Rev. B 78, 195401 (2008).

30

Gillen, R., Mohr, M. & Maultzschm, J. Symmetry Properties of Vibration Modes in Graphene Nanoribbons. Phys. Rev. B 81, 205426 (2010).

Leave a Reply

Your email address will not be published. Required fields are marked *