Nature News

Turbulent convective size scale in planetary nuclei

1.

Aurnou, J. et al. Convective turbulence in rotation in Earth and planetary nuclei. Phys. Earth. Enter. 246, 52-71 (2015).

2

Vallis, G. Ok. Dynamics of Atmospheric and Oceanic Fluids: Fundamentals and Massive-Scale Circulation (Cambridge Univ Press, 2006).

three

Jones, C.A. in Treatise on Geophysics, 2nd Version (Schubert, G.) 115-159 (Elsevier, 2015).

four

Gastine, T., Wicht, J. and Aubert, J. Scale regimes in rotational shell convection in rotation. Fluid Mech. 808, 690-732 (2016).

5

King, E. & Buffett, B. Circulation Charges and Size Scales in Geodynamic Fashions: The Function of Viscosity. Earth. Sci. Lett. 371-372, 156-162 (2013).

6

Oruba, L. & Dormy, E. Predictive Scale Legal guidelines for Spherical Rotary Dynamos. Geophysics J. Int. 198, 828-847 (2014).

7.

Jones, C. A., Soward, A.M. and Mussa, A. I. The looks of thermal convection in a quickly rotating sphere. Fluid Mech. 405, 157-179 (2000).

eight

Stevenson, D. J. Turbulent thermal convection within the presence of rotation and a magnetic subject: a heuristic idea. Geophysics Astrophysics Fluid Dyn. 12, 139-169 (1979).

9

Ingersoll, A. P. and Pollard, D. Motion within the interiors and atmospheres of Jupiter and Saturn: scale evaluation, anelastic equations, barotropic stability criterion. Icarus 52, 62-80 (1982).

ten.

Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. and Masson, J.-P. Systematic experimental research of spherical convection in speedy rotation in water and liquid gallium. Phys. Earth. Enter. 128, 51-74 (2001).

11

Kaplan, E.J., Schaeffer, N., Vidal, J. & Cardin, P. Subcritical thermal convection of liquid metals in a quickly rotating sphere. Phys. Rev. Lett. 119, 094501 (2017).

12

Or C. C. & Busse, F. H. Convection in a rotating cylindrical ring. II. Transitions to an uneven and flickering circulate. Fluid Mech. 174, 313-326 (1987).

13

N. Gillet, D. Brito, D. Jault and Nataf, H.-C. Experimental and numerical research of convection in a spherical shell in speedy rotation. Fluid Mech. 580, 83-121 (2007).

14

Taylor, G. I. The motion of a sphere in a rotating liquid. Proc. R. Soc. A 102, 180-189 (1922).

15

Guervilly, C. & Cardin, P. Subcritical convection of liquid metals in a rotating sphere utilizing a quasi-geostrophic mannequin. Fluid Mech. 808, 61-89 (2016).

16

Miyagoshi, T., Kageyama, A. and Sato, T. Formation of a zonal circulate within the coronary heart of the Earth. Nature 463, 793-796 (2010).

17

Sumita, I. & Olson, P. Experiments on extremely supercritical thermal convection in a quickly rotating hemispherical shell. Fluid Mech. 492, 271-287 (2003).

18

Guervilly, C. and Cardin, P. Jets a number of zones and convective warmth transport limitations in a quasi-geostrophic mannequin of planetary nuclei. Geophysics J. Int. 211, 455-471 (2017).

19

Zhang, Ok. Spiral columnar convection in quickly rotating spherical fluid shells. Fluid Mech. 236, 535-556 (1992).

20

Schaeffer, N. & Cardin, P. Rossby – The turbulence of waves in a quickly rotating sphere. Nonlinear course of. Geophysics 12, 947-953 (2005).

21

Julien, Ok., E. Knobloch, A. Rubio and A. Vasil, G. Warmth transport in a Rayleigh – Bénard convection with low Rossby numbers. Phys. Rev. Lett. 109, 254503 (2012).

22

Cheng, J.S. & Aurnou, J.M. Scale conduct assessments with out diffusion in digital dynamo datasets. Earth. Sci. Lett. 436, 121-129 (2016).

23

Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q. & Lognonne, P. Seismic detection of the lunar nucleus. Science 331, 309-312 (2011).

24

Christensen, U. & Aubert, J. Scaling properties of convection dynamos in rotating spherical hulls and utility to planetary magnetic fields. Geophysics J. Int. 166, 97-114 (2006).

25

Holme, R. & Olsen, N. Modeling the floor circulate of the nucleus from a secular variation at excessive decision. Geophysics J. Int. 166, 518-528 (2006).

26

Aurnou, J. & King, E. The transition to magnetostrophic convection in planetary dynamo techniques. Proc. R. Soc. A 473, 20160731 (2017).

27

Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon, 1961).

28

Yadav, R., T. Gastine, U. Christensen, S. J. Wolk and Ok. Poppenhaeger. Method a practical stability of forces in geodynamic simulations. Proc. Natl Acad. Sci. USA 113, 12065-12070 (2016).

29

Aubert, J., Gastine, T. and Fournier, A. Spherical convective dynamos within the asymptotic regime in speedy rotation. Fluid Mech. 813, 558-593 (2017).

30

N. Schaeffer, D. Jault, Nataf, H.-C. & Fournier, A. Turbulent geodynamic simulations: a bounce in direction of the middle of the Earth. Geophysics J. Int. 211, 1-29 (2017).

31.

Labrosse, S. Thermal evolution of the core with excessive thermal conductivity. Phys. Earth. Enter. 247, 36-55 (2015).

32

Pozzo, M., C. Davies, D. Gubbins, and D. Alfe, Thermal and Electrical Conductivity of Iron beneath the Earth's Primary Situations. Nature 485, 355-358 (2012).

33

Schaeffer, N. Efficient spherical harmonic transformations for pseudospectral numerical simulations. Geochem. Geosystem Geosyst. 14, 751-758 (2013).

34

Busse, F. H. Thermal Instabilities in Speedy Rotating Programs. Fluid Mech. 44, 441-460 (1970).

35

Cardin, P. & Olson, P. Chaotic thermal convection in a spherical shell in speedy rotation: penalties for the circulate within the outer core. Phys. Earth. Enter. 82, 235-259 (1994).

36

Aubert, J., N. Gillet and Cardin, P. Quasigeostrophic convection fashions in rotating spherical hulls. Geochem. Geosystem Geosyst. four, 1052 (2003).

37

Morin, V. & Dormy, E. Beta-convection as a operate of time in quickly rotating spherical hulls. Phys. Fluids 16, 1603-1609 (2004).

38

Plaut, E., Lebranchu, Y., Simitev, R. and Busse, F. H. Reynolds constraints and the typical fields generated by pure waves: purposes to shear circulate and convection in a rotating shell. Fluid Mech. 602, 303-326 (2008).

39

Gillet, N. & Jones, C. A. The quasi-geostrophic mannequin for quickly rotating spherical convection exterior the tangent cylinder. Fluid Mech. 554, 343-369 (2006).

40

Calkins, M., Aurnou, J., Eldredge, J. and Julien, Ok. Affect of fluid properties on the morphology of core turbulence and the geomagnetic subject. Earth. Sci. Lett. 359-360, 55-60 (2012).

41

Schaeffer, N. & Cardin, P. Quasigeostrophic mannequin of the instabilities of the Stewartson layer in flat containers of various depths. Phys. Fluids 17, 104111 (2005).

42

Greenspan, H.P. The speculation of rotating fluids (Cambridge Univ Press, 1968).

Leave a Reply

Your email address will not be published. Required fields are marked *