Nature News

Improved intrinsic photovoltaic impact in nanotubes of tungsten disulfide

1.

Shockley, W. The idea of p – n junctions in semiconductors and p – n junction transistors. ATT Tech. J. 28, 435-489 (1949).

2

Prepare dinner, A.M., Fregoso, B.M., de Juan, F., Coh, S. & Moore, J. E. Design Rules for Differential Present Photovoltaics. Nat. Frequent. eight, 14176 (2017).

three

Sturman, B.I. & Fridkin, V.M. The photovoltaic and photorefractive results in non-centrosymmetric supplies (Gordon and Breach Science Publishers, 1992).

four

Grinberg, I. et al. Perovskite oxides for ferroelectric and photovoltaic supplies absorbing seen mild. Nature 503, 509-512 (2013).

5

Nakamura, M. et al. Offset of the photovoltaic impact in a ferroelectric cost switch advanced. Nat. Frequent. eight, 281 (2017).

6

Brody, P. S. Excessive voltage photovoltaic impact in lead zirconate and barium titanate ceramics. J. Stable State Chem. 12, 193-200 (1975).

7.

Yang, S. Y. et al. Voltages above the forbidden band of ferroelectric photovoltaic units. Nat. Nanotechnol. 5, 143-147 (2010).

eight

Xiao, Z. G. et al. Large switchable photovoltaic impact in organometal trihalide perovskite-based units. Nat. Mater. 14, 193-198 (2015).

9

Solar, Z.H. et al. Organometallic halide of the perovskite photoferroelectric sort exhibiting distinctive anisotropy of world photovoltaic results. Angew. Chem. Int. Edn 55, 6545-6550 (2016).

ten.

Nechache, R. et al. Photovoltaic properties of epitaxial skinny movies Bi2FeCrO6. Appl. Phys. Lett. 98, 202902 (2011).

11

Wilson, J. A. and Yoffe, A. D. Transition metallic dichalcogenides dialogue and interpretation of noticed optical, electrical and structural properties. Adv. Phys. 18, 193-335 (1969).

12

Zeng, H. L. et al. Optical signature of symmetry variations and spin-valley coupling in atomically skinny tungsten dichalcogenides. Sci. Rep. three, 1608 (2013).

13

Xiao, D., Liu, B.B., Feng, W. X., Xu, X.D. and Yao, W. Spin and Valley Physics Coupled in Monolayers of MoS2 and Different Group VI Dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

14

Zhang, Y.J., T., Oka, Suzuki R., Ye, J.T. and Iwasa, Y. Electrically switchable chiral mild emitter transistor. Science 344, 725-728 (2014).

15

Wu, W. Z. et al. Piezoelectricity of MoS2 monolayer for power conversion and piezotronic. Nature 514, 470-474 (2014).

16

Tenne, R., Margulis, L., Genut, M. and Hodes, G. Polyhedral and cylindrical constructions of tungsten disulfide. Nature 360, 444-446 (1992).

17

Zak, A. et al. Scaling of WS2 nanotube synthesis. Fuller. Nanotub. Nanostruct of carbon. 19, 18-26 (2010).

18

Zhang, C. et al. Excessive efficiency photodetectors for seen and near-infrared illumination primarily based on particular person WS2 nanotubes. Appl. Phys. Lett. 100, 243101 (2012).

19

Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Frequent. eight, 14465 (2017).

20

Yadgarov, L. et al. Sturdy light-matter interplay in tungsten disulfide nanotubes. Phys. Chem. Chem. Phys. 20, 20812-20820 (2018).

21

Yuan, H. T. et al. Technology and electrical management of the coupled valley-spin round photogalvanic present in WSe2. Nat. Nanotechnol. 9, 851-857 (2014).

22

Freitag, M., Low, T., Xia, F.N. and Avouris, P. Photoconductivity of polarized graphene. Nat. Photon. 7, 53-59 (2013).

23

Quereda, J. et al. Symmetry regimes for round photocurrents within the MoSe2 monolayer. Nat. Frequent. 9, 3346 (2018).

24

Tauc, J. Technology of an emf in semiconductors with non-equilibrium present provider concentrations. Rev. Mod. Phys. 29, 308-324 (1957).

25

Yang, M.M., Kim, D.J. and Alexe, M. Flexo-photovoltaic impact. Science 360, 904-907 (2018).

26

Yuan, Y.B., Xiao, Z.G., Yang, B. & Huang, J.S. Rising Functions of Ferroelectric Supplies in Photovoltaic Units. J. Mater. Chem. A Mater. Upkeep of power. 2, 6027-6041 (2014).

27

Morimoto, T. & Nagaosa, N. Topological Nature of Nonlinear Optical Results in Solids. Sci. Adv. 2, e1501524 (2016).

28

Morimoto, T. & Nagaosa, N. Topological features of nonlinear excitonic processes in non-centrosymmetric crystals. Phys. Rev. B 94, 035117 (2016).

29

Fregoso, B.M., Morimoto, T. & Moore, J.E. Quantitative relationship between polarization variations and medium zone shift photocurrent. Phys. Rev. B 96, 075421 (2017).

30

Rangel, T. et al. Giant photovoltaic impact and spontaneous polarization of monolayer monochalcogenides. Phys. Rev. Lett. 119, 067402 (2017).

31.

Nakhmanson, S.M., Calzolari, A., Meunier, V., Bernholc, J. and Nardelli, M. B. Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. B 67, 235406 (2003).

32

Král, P., Mele, E.J. and Tomanek, D. Photogalvanic results in heteropolar nanotubes. Phys. Rev. Lett. 85, 1512-1515 (2000).

33

Pearce, A.J., Mariani, & Burkard, G. Shut-coupled method to deformation and curvature in monolayer transition metallic dichalcogenides. Phys. Rev. B 94, 155416 (2016).

34

Shi, W. et al. Collection of superconductivity in transition metallic dichalcogenides by ion displacement. Sci. Rep. 5, 11534 (2015).

35

Zhang, Y.J. et al. Optoelectronic response of a tubular p-n junction WS2. 2D materials. 035002 (2018).

36

Bar Sadan, M., Houben, L., Enyashin, A.N., Seifert, G. and Tenne, R. Atom per atom: HRTEM overview on inorganic nanotubes and fullerene-type constructions. Proc. Natl Acad. Sci. USA 105, 15643-15648 (2008).

37

Chen, Y.H., Deniz, H.Okay. and Qin, L. C. Exact measurement of the chirality of WS2 nanotubes. Nanoscale 9, 7124-7134 (2017).

38

Alon, O. E. Symmetry properties of single wall nanotubes of boron nitride. Phys. Rev. B 64, 153408 (2001).

39

Ghorbani-Asl, M. et al. Electromechanical in MoS2 and WS2: nanotubes vs. monolayers. Sci. Rep. three, 2961 (2013).

40

Bernardi, M., Palummo, M. and Grossman, J. C. A rare absorption of photo voltaic mild and photovoltaic programs of 1 nanometer in thickness utilizing two-dimensional monolayer supplies. Nano Lett. 13, 3664-3670 (2013).

41

Seeger, Okay. Semiconductor Physics: Introduction, 2nd edn (Springer-Verlag, 1982).

42

O'Donnell, Okay.P. & Chen, X. Affect of Temperature on Prohibited Semiconductor Bands. Appl. Phys. Lett. 58, 2924-2926 (1991).

43

He, Z. Y. et al. Modulation of the photoluminescence of tungsten disulfide by lateral electrical fields as a operate of the layer. ACS Nano 9, 2740-2748 (2015).

44

Braga, D., Lezama, I.G., Berger, H. and Morpurgo, A. F. Quantitative dedication of the WS2 band hole with ambipolar ionic liquid gate transistors. Nano Lett. 12, 5218-5223 (2012).

45

Trousil, Z. Bulk, photo-voltaic phenomenon. Czech. J. Phys. 6, 96-98 (1956).

46

Frank, H. Lichtelelektrische Messung of interns elektrischen Feldes in inhomogenen Halbleitern. Czech. J. Phys. 6, 433-441 (1956).

47

Ichiki, M. et al. Photovoltaic impact of lanthanum zirconate titanate, lead in a laminated movie construction. Appl. Phys. Lett. 84, 395-397 (2004).

48.

Cao, D. W. et al. Excessive effectivity ferroelectric movie photo voltaic cells with n-type Cu2O cathode buffer layer. Nano Lett. 12, 2803-2809 (2012).

49

Zenkevich, A. et al. Large bulk photovoltaic impact in ferroelectric BaTiO3 skinny movies. Phys. Rev. B 90, 161409 (2014).

50

Alexe, M. & Hesse, D. Photovoltaic results improved by the tip in bismuth ferrite. Nat. Frequent. 2, 256 (2011).

51.

Zak, A., Sallacan-Ecker, L., Margolin A, Genut, M. and Tenne, R. Overview of the expansion mechanism of WS2 nanotubes within the laddered fluidized mattress reactor. Nano four, 91-98 (2009).

Leave a Reply

Your email address will not be published. Required fields are marked *